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Chapter 1
Solutions to Selected
Exercises

1.1 Chapter 1
Exercise 1.1. ?? Let Y � An be a subvariety not containing the origin, and let W �
P1 � An be the closure of the locus

W ı D f.t; z/ j z 2 t � Y g

as in the proof of Prosposition ??. Show that the fiber of W over t D 0 is the cone with
vertex the origin 0 2 An over the intersection Y \H1, where Y � Pn is the closure of
Y in Pn and H1 D Pn n An is the hyperplane at infinity.

Solution to Exercise ??: Let us denote by W0 the fiber of W over t D 0. Let Y D
V.f1; : : : ; fm/ where

fi D fi;0 C fi;1 C : : :C fi;di�1 C fi;di

and fi;j is a homogeneous degree j polyonomials in n variables z1; : : : ; zn. To obtain
Y � Pn, we need to homogenize all polynomials fi using a further variable z0, getting
polynomials

f i D z
di

0 fi;0 C z
di�1
0 fi;1 C : : :C z0fi;di�1 C fi;di

;

so that Y D V.f 1; : : : ; f m/. Intersecting with H1 means just to set z0 D 0, so that we
get Y \H1 D V.z0; f 1; : : : ; f m/ D V.z0; f1;d1

; : : : ; fm;dm
/; in An, the cone over it

is just V.f1;d1
; : : : ; fm;dm

/; let us now show that this is indeed W0. From the definition
of W ı, we have that on the fiber over t ¤ 0 it vanishes every polynomial of the kind
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fi .
z1

t
; : : : ; zn

t
/, that means, (multiplying by the right power of t), on the fiber over t it

vanishes the polynomial

tdifi;0 C t
di�1fi;1 C : : :C tfi;di�1 C fi;di

:

Considering these as polynomials on the whole P1 � An, they have to vanish on W
(because they vanish on a dense subset), so setting t D 0 we have that W0 is contained
in V.f1;d1

; : : : ; fm;dm
/.

To prove thatW0 contains the cone V.f1;d1
; : : : ; fm;dm

/ (and so that they are indeed
equal). First, let us show that W0 is indeed a cone; in fact, this follows from the fact that
given any nonzero scalar � the linear transformation

.t; z/ 7! .�t; � � z/

does indeed keep fixed W ı (and hence W and W0), because W ı is just the set of all
.t; z/ such that t�1z 2 Y ; but this transformation on W0 is just the rescaling by �, so
W0 is invariant under such rescalings. Then, let us consider the closure W of W ı in
P1 � Pn; this does contain the (not closed) subvariety .A1 n 0/ � .Y \H1/ (because
all fibers of W ı have the same “limit at infinity”), so that also the fiber W 0 over t D 0
of W contains Y \H1.

All of this proves that the limit at infinity ofW0 is contained in Y \H1, that means,
W 0 is the cone over a subvariety Z � Y \H1. Now, W is irreducible of dimension
dim.Y /C 1, and W 0 is defined by the equation t D 0, so by Theorem ?? W 0 is purely
dimensional of dimension dim.Y /. Now, if Z is not the whole Y \H1, then Y \H1
is an irreducible component of W 0, and it has dimension dim.Y / � 1 and this is an
absurd.

Exercise 1.2. ?? Show that if X is an irreducible plane cubic with a node, then c1 W
P ic.X/! A1.X/ is not a monomorphism as follows. Show that there is no birational
map from X to P1. Use this to show that if p ¤ q 2 X are smooth points then the line
bundles OX .p/ and OX .q/ are non-isomorphic. Show, however, that the zero loci of
their unique sections, the points p and q, are rationally equivalent.

Solution to Exercise ??: Let P1 D X�
�
�! X be the normalization of X , a smooth

rational curve, and let n1 and n2 be the points that maps down to the node n in X .
In P1 the preimages of points p and q (that we will still call p and q) are rationally
equivalent; in fact, the diagonal � � P1 � P1 realizes the rational equivalence (picking
t0 D p and t1 D q). Applying � to the second factor, we get .IdP1 � �/.�/ � P1 �X ,
that realizes the equivalence between p and q in X . To prove that OX .p/ and OX .q/
are non-isomorphic, we need to prove that OX .p/ ˝ OX .q/� Š OX .p � q/ has no
nonvanishing sections (actually, we will see that it has no nonzero section). A section of
OX .p � q/ would be a meromorphic function having a simple pole in p and a simple
zero in q, that is, a morphism f W X ! P1 such that f �1.0/ D q and f �1.1/ D p.
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This would pull back by the normalization map to a morphism f � W P1 ! P1 such that
.f �/�1.0/ D q and .f �/�1.1/ D p (this holds scheme-theoretically because zero and
pole are simple), so that f � should be of degree 1, that is, an isomorphism; this is an
absurd though, because f � would map the two distinct points n1 and n2 to the same
point. Bonus question: are OX .2p/ and OX .2q/ are isomorphic?

Exercise 1.3. ?? Show that if X � P3 is a quadric cone with vertex p then A1.X/ D Z,
generated by the class ŒL� of a line L � X , and show that the image of c1 W P ic.X/!
A1.X/ is 2Z. Hint: show that there is no line bundle on X with first Chern class ŒL� by
considering the degree of its restriction to L (see Example ??).

Solution to Exercise ??: The degree in the ambient space P3 gives a surjective homo-
morphism A1.X/! Z (this can also be seen as the pushforward A1.X/! A1.P3/ Š
Z); let’s prove now the injectivity too, in particular, proving that every degree d reduced
curve C in X is rationally equivalent to the union of d distinct lines through the vertex;
in this way, it is easy to prove that all degree d curves in X are rationally equivalent. We
will use exercise ?? to explicitly describe the equivalence; let H be an hyperplane in P3

not containing the vertex p, and having d distinct points of intersection with C ; let’s
consider now the affine space P3 nH , with coordinates such that p is in the origin. Now,
by exercise ??, in this coordinates the family tC for t ! 0 deforms C into a cone over
C \H , that is, d lines through the vertex (note that the whole transition happens inside
X ).

To prove that ŒL� is not in the image of P ic.X/, let’s suppose there exists a line
bundle L with a section having a simple zero along a line L of the ruling; this bundle
satisfies L˝L D OX .H/ where OX .H/ is the line bundle of the hyperplane section in
P3, because any union of two lines in the ruling is an hyperplane section. Let’s consider
now the restriction (pullback) LjL; from the relation above, in A0.L/ D Z we would
have

2deg.c1.LjL// D deg.c1.OL.H/// D 1

that leads to an absurd because the Chern class belongs to A0.L/ D Z.

1.2 Chapter 2
Exercise 1.4. ?? Let � D �2;2 W P2 ! P5 be the quadratic Veronese map. If C � P2 is
a plane curve of degree d , show that the image �.C / has degree 2d . (In particular, this
means that the Veronese surface S � P5 contains only curves of even degree!) More
generally, let � D �n;d W Pn ! PN be the degree d Veronese map. If X � Pn is a
variety of dimension k and degree e, show that the image �.X/ has degree dke.
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Solution to Exercise ??: Let’s apply the push-pull formula ?? (??). Let �N 2 A1.PN /
be the hyperplane class in PN , and �n 2 A1.Pn/ be the hyperplane class in Pn; we
know that ���N D d�n. Let ŒX� 2 An�k.Pn/ be the class of X : the degree of �.X/ is
given by the class �kN � ��.ŒX�/ 2 A

N .PN /, and by the push pull formula we get

deg.�kN � ��.ŒX�// D deg.��..�
��N /

k
� ŒX�// D dkdeg.�kn � ŒX�/ D d

ke:

Exercise 1.5. ?? Let � D �r;s W Pr � Ps ! P.rC1/.sC1/�1 be the Segre map, and let
X � Pr �Ps be a subvariety of codimension k. If the class ŒX� 2 Ak.Pr �Ps/ is given
by

ŒX� D c0˛
k
C c1˛

k�1ˇ C � � � C ckˇ
k

(where ˛ and ˇ 2 A1.Pr � Ps/ are the pullbacks of the hyperplane classes, and we take
ci D 0 if i > s or k � i > r),

(a) Show that all ci � 0.
(b) Calculate the degree of the image �.X/ � P.rC1/.sC1/�1; and, using this and the

first part,
(c) Show that any linear space ƒ � †r;s � P.rC1/.sC1/�1 contained in the Segre

variety lies in a fiber of a projection map.

Solution to Exercise ??: About part (a), this coefficients appear as intersection products
with classes ˛r�iˇs�j with i C j D k corresponding to products of subspaces Pi �Pj ;
in characteristic zero, we can apply Kleiman’s theorem, and find that the coefficients
arise as zero-dimensional transverse intersection, that is, a nonnegative number of points.
In nonzero characteristic, with a further step one can prove that the intersection with the
general k-dimensional product of subspaces is zero dimensional (otherwise, X would be
higher dimensional); so, we can use the fact that a dimensionally transverse intersection
always gives a nonnegative number. About part (b), we can use the push-pull formula;
let � D �rsCrCs the hyperplane class in PrsCrCs: then we have

deg.�rCs�k � ��ŒX�/ D deg..˛ C ˇ/
rCs�k

� ŒX�/ D

kX
iD0

 
r C s � k

s � i

!
ci :

A linear space has degree 1; so, we need to find when this number achieves 1, and this
(given part (a)) is when there is only one nonzero coefficient, and with the binomial
coefficient being one: the only possibilities are then ˛rˇk�r or ˛k�sˇs (and they happen
only if k is greater than r and s), that is, linear subspaces of fibers, that completes part
(c).

Exercise 1.6. ?? Let ' W P2 ! P2 be the rational map given by

' W .x0; x1; x2/ 7!

�
1

x0
;
1

x1
;
1

x2

�
;
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or, equivalently,

' W .x0; x1; x2/ 7! .x1x2; x0x2; x0x1/

and let �' � P2 � P2 be the graph of '. Find the class

Œ�' � 2 A
2.P2 � P2/:

Solution to Exercise ??: The class is Œ�' � D ˛2 C 2˛ˇ C ˇ2. To prove it, let us use
the indeterminate coefficients method; the class we are looking for is of the kind

c0˛
2
C c1˛ˇ C c2ˇ

2:

Note that ' is not regular, so we can’t use Proposition ??; from the second expression
(with double products) we can see that is defined only away from points with two
zero coordinates. This morphism is birational though: from the first expression with
reciprocals, it’s easy to see that it is actually an involution. So, the general intersection
with both fibers in P2 � P2 is one reduced point, giving c0 D c2 D 1. To find c1, we
have to intersect with a general product P1 � P1, that is, restricting ' to a general line in
P2, and asking for the intersection of the image with a general line. Restricting ' to a
general line we get a regular morphism of degree 2, so that the image is a smooth conic
in P2, whose intersection with a general line is transverse and given by 2 points, so that
c1 D 2.

Exercise 1.7. ?? Let � W P2 � P2 ! P8 be the Segre map. Find the class of the graph
of � in A.P2 � P2 � P8/.

Solution to Exercise ??: Let ˛; ˇ; � be the hyperplane classes in P2 � P2 � P8. The
graph is 4 dimensional, so its class is going to be of the form

0�j�2X
0�i�2

cij˛
iˇj �8�i�j :

To find the coefficients cij , we have to intersect with a general Pi � Pj � P8�i�j ; in
particular, the degree of this intersection is going to be the degree of � restricted to
Pi � Pj ; these are just degrees of smaller Segre embeddings, that is, smaller binomial
coefficients

�
iCj
i

�
. To see that the intersection is trasverse, first note that the intersection

with any Pi � Pj � P8 is transverse because this is a graph; then, the intersection with a
general Pi � Pj � P8�i�j is transverse, because of Bertini’s theorem in P8. The class
is then

0�j�2X
0�i�2

 
i C j

i

!
˛iˇj �8�i�j :
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Exercise 1.8. ?? Let s W P2 � P2 ! P2� be the rational map sending .p; q/ 2 P2 � P2

to the line p; q. Find the class of the graph of s in A.P2 � P2 � P2�/.

Solution to Exercise ??: Note at first that the closure of the graph is exactly the locus

‰ D f.p; q; L/jp; q 2 Lg � P2 � P2 � P2�

since this is closed and irreducible (looking at the projection onto P2�) and contains the
graph as open subset. Let now ˛; ˇ; 
 be the hyperplane classes in P2 � P2 � P2�. The
class we are looking for is of the form

Œ‰� D c00

2
C c10˛
 C c01ˇ
 C c20˛

2
C c11˛ˇ C c02ˇ

2:

Assuming transversality (by Kleiman’s theorem, or a direct evaluation of tangent spaces)
we get

c00 D #.‰ \ fpg � fqg � P2�/ D #f.p; q; pq/g D 1

c10 D #.‰ \ P1 � fqg � P1�/ D 1

c01 D #.‰ \ fpg � P1 � P1�/ D 1

c20 D #.‰ \ P2 � fqg � fLg/ D 0

c11 D #.‰ \ P1 � P1 � fLg/ D 1

c02 D #.‰ \ fpg � P2 � fLg/ D 0

where every calculation comes from easy geometric observations. The class is then

Œ‰� D 
2 C ˛
 C ˇ
 C ˛ˇ:

This could have been seen also from the fact that‰ is the intersection of the loci fp 2 Lg
and fq 2 Lg whose classes are 
 C ˛ and 
 C ˇ.

Exercise 1.9. ?? Let X1; : : : ; Xn � Pn be hypersurfaces of degrees d1; : : : ; dn. Let
p 2 Pn be a point, and suppose that the hypersurface Xi has multiplicity mi at p;
suppose moreover that the intersection of the projective tangent cones PTCpXi to Xi at
p is empty. Use the description of the Chow ring of the blow-up of Pn at p to show that
the number of points of intersection of the Xi away from p is

#
�\

.Xi n fpg/
�
D

Y
di �

Y
mi :

Solution to Exercise ??: Let B be the blow up of Pn at p. The proper transforms
X 01; : : : ; X

0
n of the hypersurfaces X1; : : : ; Xn in B intersect the exceptional divisor E

in their tangent cones at p, that are disjoint; thus, the X 0i don’t intersect inside E; their
intersection in B correspond exactly to the intersection of the Xi in Pn away from p;
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now, the class ofX 0i is given by the relation ŒX 0i �Cmi ŒE� D �
�ŒXi �, so that following the

notation in ?? we get ŒX 0i � D di��mie, whose degree of intersection is
Q
di�

Q
mi ; to

prove that they intersect in exactly this number of points, in charasteristic 0 by Kleiman’s
theorem in B this is immediately true. Otherwise, one way is to prove that among the
n-tuples .X1; : : : ; Xn/ of hypersurfaces with the right degrees and multiplicities at p, the
n-tuples whose intersection away from p is not transverse are few (less dimensional than
the space of all n-tuples) so that in the general case the intersection is indeed transverse,
or to use a refinement of Bertini’s theorem.

Exercise 1.10. ?? Let X � Pn be a hypersurface of degree d . Suppose that X has
an ordinary double point (that is, a point p 2 X such that the projective tangent cone
PTCpX is a smooth quadric) and is otherwise smooth. What is the degree of the dual
hypersurface X� � Pn�?

Solution to Exercise ??: Let’s work in the blow up B of Pn at p, with X 0 the proper
transform of X , whose class in A�.B/ is d� � 2e. The rational map Pn� ! Pn�

given by partial derivatives of a function f defining X extend to a regular morphism
B ! Pn�, and by this map the hyperplane section of Pn� pulls back to the class
.d � 1/�� e 2 A1.B/, because the morphism is given by degree d � 1 polynomials all
of them vanishing, but not being singular, at p. Now by a Bertini approach, n � 1 such
hypersurfaces intersect transversely in B: the degree of the dual hypersurface is then

deg...d � 1/� � e/n�1.d� � 2e// D d.d � 1/n�1 � 2:

Exercise 1.11. ?? Let X � Pn be a variety of degree d and dimension k; suppose that
p 2 X is a point of multiplicity m (see Section ?? for the definition). Let B D Blp.Pn/
be the blow-up of Pn at the point p, and QX � B the proper transform of X in B . Find
the class Œ QX� 2 An�k.B/.

Solution to Exercise ??: The class of QX is going to be of the kind ˛�n�k C ˇen�k . To
get ˛, the intersection with a general .n � k/-plane disjoint from E will be d distinct
and reduced points, so ˛ D d . To get ˇ, let’s intersect QX with a general .n � k/-plane
inside E (whose class is .�1/n�k�1en�k), and we get m distinct reduced points; this is
because the intersection QX \E is a .k � 1/-fold of degree m in E Š Pn�1. We get then

Œ QX� D d�n�k C .�1/n�k�1men�k :

Exercise 1.12. ?? Let p 2 X � Pn be as in the preceding Exercise, and suppose that
the projection map �p W X ! Pn�1 is birational onto its image. What is the degree of
�p.X/?
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Solution to Exercise ??: The rational morphism �p extends to a regular morphism
B ! Pn�1 (that we will call �), and we are looking for the degree of the image of QX .

Let � be the hyperplane class in Pn�1; we are looking for the intersection �k �Œ�. QX/�;
by the fact that � is birational on QX , we have that this is the same as �k � ��.Œ QX�/. By
the push pull formula, this is equal to

deg.��.�
�.�k/ � Œ QX�// D deg..� � e/k.d�n�k C .�1/n�k�1men�k// D

D deg.d�n C .�1/n�1men/ D d �m;

where we used that � pulls back to the proper transform of an hyperplane containing p,
so whose class is given by � � e by the previous exercise.

Exercise 1.13. ?? Show that the Chow ring of a product of projective spaces Pr1 � � � � �

Prk is

A.Pr1 � � � � � Prk / D
O

A.Pri /

D ZŒ˛1; : : : ; ˛k�=.˛
r1C1
1 ; : : : ; ˛

rkC1
k

/;

where ˛1; : : : ; ˛k are the pullbacks of the hyperplane classes from the factors. Use this
to calculate the degree of the image of the Segre embedding

� W Pr1 � � � � � Prk ,! P.r1C1/���.rkC1/�1

corresponding to the multilinear map V1 � � � � � Vk ! V1 ˝ � � � ˝ Vk .

Solution to Exercise ??: The description of the Chow ring of Pr1 �� � ��Prt follows by
exactly the same logic as in the two-factor case. Similarly, if � 2 A1.P.r1C1/���.rkC1/�1/

is the hyperplane class in the target projective space, we see that ��� D ˛1 C � � � C ˛k ,
and the degree of the image is correspondingly

deg .˛1 C � � � C ˛k/
r1C���Crk D

 
r1 C � � � C rk

r1; : : : ; rk

!
D
.r1 C � � � C rk/Š

r1Š � � � rkŠ
:

Exercise 1.14. ?? For t ¤ 0, let At W Pr ! Pr be the automorphism

ŒX0; X1; X2; : : : ; Xr � 7! ŒX0; tX1; t
2X2; : : : ; t

rXr �:

Describe the limit, as t ! 0, of the graph of At in Pr �Pr : that is, letˆ � A1�Pr �Pr

be the closure of the locus

Q̂ D f.t; p; q/ W t ¤ 0 and q D At .p/g:

Describe the fiber ˆ0 of ˆ over the point t D 0, and deduce once again the formula of
Section ?? for the class of the diagonal in Pr � Pr .



10 Chapter 1 Solutions to Selected Exercises

In the simplest case, this construction is a rational equivalence between a smooth
plane section of a quadric Q Š P1 � P1 � P3 (the diagonal, in terms of suitable
identifications of the factors with P1), and a singular one (the sum of a line from each
ruling), as in Figure ??.

Solution to Exercise ??: In terms of coordinates .ŒX0; : : : ; Xr �; ŒY0; : : : ; Yr �/ on Pr �
Pr , the limit is the locus

� D

r[
iD0

V.X0; : : : ; Xi�1/ � V.YiC1; : : : ; Yr/ Š

r[
iD0

Pr�i � Pi ;

whose class is visibly
P
˛iˇr�i . To see the inclusion ˆ0 � � , observe that the ideal of

ˆ includes the polynomials XiYj � tj�iXjYi for all 0 � i < j � r ; so the ideal of ˆ0
includes XiYj for all i < j . To see the inclusion in the opposite direction, show that�

0; Œ0; : : : ; 0; 1; XiC1; : : : ; Xr �; ŒY0; : : : ; Yi�1; 1; 0; : : : ; 0�
�
D lim
t!0

�
t; p; At .p/

�
where

p D
�
t iY0; t

i�1Y1; : : : ; tYi�1; 1; XiC1; : : : ; Xr
�
:

Exercise 1.15. ?? Let

‰ D f.p; q; r/ 2 Pn � Pn � Pn jp; q and r are collinear in Png:

(Note that this includes all diagonals.) Show that this is a closed subvariety of codimen-
sion n � 1 in Pn � Pn � Pn.

Solution to Exercise ??: If the points p; q and r are given by the homogeneous vectors
.X0; : : : ; Xn/, .Y0; : : : ; Yn/ and .Z0; : : : ; Zn/, then ‰ is the zero locus of the 3 � 3
minors of the matrix 0@X0 X1 : : : Xn

Y0 Y1 : : : Yn

Z0 Z1 : : : Zn

1A :
These are homogeneous trilinear forms on Pn � Pn � Pn, from which we see that ‰ is
indeed a closed subset of Pn � Pn � Pn. Moreover, from the form of the equations—
the 3 � 3 minors of a 3 � .n C 1/ matrix—we see that every component of ‰ has
codimension at most n � 1 (see for example Exercise 10.9 of ?]). Since the projection
‰ ! Pn � Pn onto any two factors is surjective, with fibers P1 away from the diagonal
� � Pn�Pn and fibers Pn over�we can see that it’s irreducible, and hence a subvariety
of codimension n � 1; This is because an eventual component lying over the diagonal
would have codimension n, but this is not possible.
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Exercise 1.16. ?? Suppose that .F0; : : : ; Fr/ and .G0; : : : ; Gr/ are general .r C 1/-
tuples of homogeneous polynomials in r C 1 variables, of degrees d and e respec-
tively, so that in particular the maps f W Pr ! Pr and g W Pr ! Pr sending
x to .F0.x/; : : : ; Fr.x// and .G0.x/; : : : ; Gr.x// are regular. For how many points
x D .x0; : : : ; xr/ 2 Pr do we have f .x/ D g.x/?

Solution to Exercise ??: Let �f and �g � Pr � Pr be the graphs of f and g, and 
f
and 
g 2 Ar.Pr � Pr/ the classes of their graphs. By Proposition ??, we have


f D

rX
iD0

d i˛iˇr�i and 
f D

rX
iD0

ei˛iˇr�i

So, after verifying transversality either by Kleiman in characteristic 0 or more in general
by calculation of tangent spaces, we have the answer

#.�f \ �g/ D deg.
f � 
g/ D
rX
iD0

d ier�i :

Exercise 1.17. ?? Consider the locus ˆ � .P2/4 of fourtuples of collinear points. Find
the class ' D Œˆ� 2 A2..P2/4/ of ˆ by the method of undetermined coefficients; that
is, by intersecting with cycles of complementary dimension.

Solution to Exercise ??: As suggested, we write

' D Œˆ� D

4X
iD1

ci˛
2
i C

X
1�i<j�4

di;j˛i˛j :

We then have

c1 D deg.' � ˛22˛
2
3˛
2
4/ D #

�
ˆ \ .P2 � fp0g � fq0g � fr0g/

�
D 0

for general (and in particular non-collinear) p0; q0 and r0 2 P2; likewise, ci D 0 for all
i . After a transversality check, we have similarly

d1;2 D deg.' � ˛1˛2˛23˛
2
4/ D #

�
ˆ \ .L �M � fq0g � fr0g/

�
D 1

for general lines L;M � P2 and points q0; r0 2 P2; likewise, di;j D 1 for all i < j .
In sum, ' D

P
i<j ˛i˛j .

Exercise 1.18. ?? With ˆ � .P2/4 as in the preceding problem, calculate the class
' D Œˆ� by using the result of Exercise ?? on the locus ‰ � .P2/3 of triples of collinear
points, and considering the intersection of the loci ‰1;2;3 and ‰1;2;4 of fourtuples
.p1; p2; p3; p4/ with p1; p2; p3 collinear and with p1; p2; p4 collinear.
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Solution to Exercise ??: Let‰i;j;k be the locus where pi ; pj and pk are collinear, and
 i;j;k its class. By Exercise ?? (or the calculation in Section ??),

 1;2;3 D ˛1 C ˛2 C ˛3 and  1;2;4 D ˛1 C ˛2 C ˛4

We observe that the loci ‰1;2;3 and ‰1;2;4 have intersection

‰1;2;3 \‰1;2;4 D ˆ [�1;2

where �1;2 D fp1 D p2g is the preimage of the diagonal under projection on the first
two factors. Checking that this intersection is generically transverse (Kleiman won’t
help us here; we have to calculate tangent spaces), we have

' C Œ�1;2� D .˛1 C ˛2 C ˛3/.˛1 C ˛2 C ˛4/ D ˛
2
1 C ˛1˛2 C ˛

2
2 C

X
i<j

˛i˛j

and the result follows.

Exercise 1.19. ?? Let A;B and C W P2 ! P2 be three general automorphisms. For
how many points p 2 P2 are the points p;A.p/; B.p/ and C.p/ collinear?

Solution to Exercise ??: In .P2/4, let �A; �B and �C be the pullbacks, via the pro-
jections �1;2; �1;3 and �1;4, of the graphs of A;B and C ; let 
A; 
B and 
C be their
classes. Kleiman’s theorem implies that the intersectionˆ\�A\�B \�C is transverse,
so that the answer to the exercise is given by

#.ˆ \ �A \ �B \ �C / D deg.'
A
B
C /

D deg

0@X
i<j

˛i˛j

4Y
kD2

.˛21 C ˛1˛k C ˛
2
k/

1A
D deg

0@˛2˛3˛4X
i<j

˛i˛j

4Y
kD2

.˛1 C ˛k/

1A
D 6

Exercise 1.20. ?? Let B be the blowup of Pn at a point p as in Section ?? above, with
classes �k; 
k and ek as described. Use the relation en�1 D �n�1 � 
n�1 to describe
the classes 
k in terms of �k and ek and vice versa.

Solution to Exercise ??: A k-plane contained in the exceptional divisor E is the trans-
verse intersection of E with the proper transform of a .k C 1/-plane in Pn containing p;
that is,

ek D e
kC1:
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Now write e D � � 
 and use the relations derived in Section ?? to express this as

ek D .� � 
/
kC1 D �k � 
k :

Put another way, the difference between the class of the preimage of a k-plane not
containing p and the class of the proper transform of a k-plane containing p is the class
of a k-plane contained in E. Note that except in case k D n � 1 this is not directly
visible!

The next few exercises deal with the blow-up of P3 along a line. To fix notation, let
� W X ! P3 be the blow-up of P3 along a line L � P3; that is, the graph X � P3 � P1

of the rational map �L W P3 ! P1 given by projection from L; let ˛ W X ! P1 be
projection on the second factor.

Exercise 1.21. ?? Let H � P3 be a plane containing L, and QH � X its proper
transform. Let J � P3 be a plane transverse to L, QJ � X its proper transform (which
equals its preimage in X), and let M � J be a line not meeting L. Show that the
subvarieties

X; QH; QJ ; QJ \ QH; M; M \ QH

are the closed strata of an affine stratification of X , with open strata isomorphic to affine
spaces. In particular, since only one (M \ QH ) is a point, deduce that A3.X/ Š Z.

Solution to Exercise ??: The solution of this exercise is left to the reader.

Exercise 1.22. ?? Let h D Œ QH�, j D Œ QJ � 2 A1.X/ and m D ŒM � 2 A2.X/ be the
classes of the corresponding strata. Show that

h2 D 0; j 2 D m; and deg.jm/ D deg.hm/ D 1:

Conclude that

A.X/ D ZŒh; j �=.h2; j 3 � hj 2/:

Solution to Exercise ??: As in the calculations in Section ??, there are lots of effective
cycles representing these classes, so it’s not hard to evaluate the intersection products
in question. For example, h is the class of the proper transform QH of a plane H � P3

containing L; if H 0 � P3 is another such plane, with proper transform QH 0, then QH and
QH 0 will be disjoint, whence h2 D 0. Similarly, two general planes not containing L will

intersect transversely in a line disjoint from L, so j 2 D m, and so on.

Exercise 1.23. ?? Now let E � X be the exceptional divisor of the blow-up, and
e D ŒE� 2 A1.X/ its class. What is the class e2?

Solution to Exercise ??: In contrast to the last problem, the class e has E as its only
effective representative cycle. To calculate e2, we observe that the preimage in X of
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a plane H � P3 containing L is the sum of its proper transform and the exceptional
divisor, so that j D hC e or equivalently e D j � h. It follows then that

e2 D .j � h/2 D m � 2hj:

Exercise 1.24. ?? Let P5 be the space of conic curves in P2.

(a) Find the dimension and degree of the locus of double lines (in characteristic¤ 2).
(b) Find the dimension and degree of the locus � of singular conics (that is, line pairs

and double lines).

Solution to Exercise ??: For the first part, observe that the locus of double lines is the
image of the map P2 ! P5 sending a linear form to its square; in characteristic ¤ 2,
this is the Veronese embedding, so it has degree 5.

The second part can be done in many ways. We can do it in the manner of Section ??:
we realize the locus of singular conics as the image of P2 � P2 ! P5 sending a pair of
linear forms to their product. This is the Segre map �2;2 W P2 � P2 ! P8 followed by
a linear projection. Since the projection has degree 2 onto its image, the degree of the
image is 1

2

�
4
2

�
D 3. Alternatively, if L � P5 is a general line—that is, a general pencil

of conics—then L consists of all conics containing the base locus of the pencil, which
consists of four points p1; : : : ; p4, no three collinear. The points of L\� correspond to
line pairs containing fp1; : : : ; p4g, of which there are visibly 3. Finally, if we realize P5

as the space of 3 � 3 symmetric matrices, � is the zero locus of the determinant, which
is a homogeneous cubic polynomial in the entries.

Exercise 1.25. ?? Let P9 be the space of plane cubics, and � � P9 the locus of reducible
cubics. Let L and C � P2 be a line and a smooth conic intersecting transversely at two
points p; q 2 P2; let LC C be the corresponding point of � . Show that � is smooth at
LC C , with tangent space

TLCC� D Pfhomogeneous cubic polynomials F W F.p/ D F.q/ D 0g:

Solution to Exercise ??: Let � W P2�P5 ! � � P9 be as in Section ??. Since .L; C /
is the unique point in ��1.LC C/, we need to show that the differential d� is injective
at .L; C /, with image contained in the subspace specified. Letting G and H be the
homogeneous linear and quadratic polynomials defining L and C , we can represent
a tangent vector to P2 at L as G C �G0, where G0 is a linear form taken modulo G,
and likewise we can represent a tangent vector to P5 at C as H C �H 0, where H 0 is a
quadratic form taken modulo H . Multiplying, we have

d�.L;C/.G C �G
0;H C �H 0/ D GH C �.G0H CGH 0/:
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Thus the image of d�.L;C/ contains all cubics of the form G0H CGH 0, which is to say
all cubics vanishing at L \ C , and the result follows.

Exercise 1.26. ?? Using the preceding exercise, show that if p1; : : : ; p7 2 P2 are
general points, and Hi � P9 is the hyperplane of cubics containing pi , then the
hyperplanes H1; : : : ;H7 intersect � transversely—that is, the degree of � is the number
of reducible cubics through p1; : : : ; p7.

Solution to Exercise ??: Since the points pi are general, no three are collinear and no
six lie on a conic; thus if LC C is any reducible cubic containing all 7, the line L must
contain 2 and the conic C five. Say C contains p1; : : : ; p5; since p6 and p7 are general
with respect to p1; : : : ; p5, L must be transverse to C and the points of L \ C disjoint
from p1; : : : ; p7.

Now let p8 and p9 be the points of intersection L \ C . By the preceding exercise,
we need to show that LC C is the unique cubic containing fp1; : : : ; p9g. But any such
cubic contains the seven points p1; : : : ; p5; p8; p9 of C and the four points p6; : : : ; p9
of L, and so must contain both.

Exercise 1.27. ?? Calculate the number of reducible plane cubics passing through 7
general points p1; : : : ; p7 2 P2, and hence, by the preceding exercise, the degree of � .

Solution to Exercise ??: By the preceding exercises, this is equivalent to ask in how
many ways can seven points be partitioned in two sets of two and five elements, that
means,

�
7
2

�
= 21.

Exercise 1.28. ?? We can also calculate the degree of the locus † � P9 of triangles
(that is, totally reducible cubics) directly, as in the series of exercises starting with (??).
To start, show that if C D L1 C L2 C L3 is a triangle with the three vertices—that is,
points pi;j D Li \ Lj of pairwise intersection—distinct, then † is smooth at C with
tangent space

TLCC† D Pfhomogeneous cubic polynomials F W F.pi;j / D 0 8 i; j g:

Solution to Exercise ??: We can represent the locus of triangles as the image of the
map � W P2 � P2 � P2 ! P9 sending a triple of linear forms to their product; we claim
that at a point .L1; L2; L3/ 2 P2 � P2 � P2 as in the exercise, the differential d� is
injective, with image as specified. As in Exercise ??, if Li D V.Hi / we write

d�.L1;L2;L3/.H1 C �H
0
1;H2 C �H

0
2;H3 C �H

0
3/

D H1H2H3 C �.H
0
1H2H3 CH1H

0
2H3 CH1H2H

0
3/I

and then it is sufficient to show that the pairwise products HiHj generate the ideal of
all polynomials vanishing on the points pi;j .
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Exercise 1.29. ?? Using the preceding exercise,

(a) Show that if p1; : : : ; p6 2 P2 are general points, then the degree of † is the number
of triangles containing p1; : : : ; p6; and

(b) Calculate this number directly.

Solution to Exercise ??: The fact that for p1; : : : ; p6 general the hyperplanes Hpi

intersect † transversely now follows as in the solution of Exercise ??: any triangle
containing fp1; : : : ; p6g must (after possibly re-ordering the points) consist of the union
C of the lines p1; p2, p3; p4 and p5; p6; we check that the points of pairwise intersection
of these lines are distinct from each other and from p1; : : : ; p6, and finally deduce that
the only cubic containing these three points in addition to p1; : : : ; p6 is C .

It follows that the degree of † is the number of triangles containing six general
points, which is simply the number of ways of breaking up the points into three pairs;
that is, 1

6

�
6

2;2;2

�
D 15.

Exercise 1.30. ?? Consider a general asterisk—that is, the sum C D L1 C L2 C L3

of three distinct lines all passing through a point p. Show that the variety † � P9 of
triangles is smooth at C , with tangent space the space of cubics double at p. Deduce
that the space A � P9 of asterisks is also smooth at C .

Solution to Exercise ??: For the first part, this is the same calculation as in Exercise ??,
the difference being that here the quadrics HiHj generate the ideal of polynomials
double at p. For the second part, we observe that A is the image, under the restriction of
the map � W P2�P2�P2 ! P9, of the locusˆ � P2�P2�P2 of triples of concurrent
lines, and argue (by homogeneity, for example) that ˆ is smooth at .L1; L2; L3/.

Exercise 1.31. ?? Let p1; : : : ; p5 2 P2 be general points. Show that any asterisk
containing fp1; : : : ; p5g consists, after possibly relabelling the points, of the sum of the
line L1 D p1; p2, the line L2 D p3; p4 and the line L3 D p5; .L1 \ L2/.

Solution to Exercise ??: Since the points pi are general, no line contains three of them;
hence two must contain two and one one.

Exercise 1.32. ?? Using the preceding two exercises, show that for p1; : : : ; p5 2 P2

general points, the hyperplanes Hpi
intersect the locus A � P9 of asterisks transversely,

and calculate the degree of A accordingly.

Solution to Exercise ??: This is slightly trickier than the preceding examples involving
reducible cubics and triangles, since we don’t have an explicit description of the tangent
space TCA � P9. To set up, let C D L1 C L2 C L3 be as in Exercise ??, and suppose
that C 0 2 TCA \ Hp1

\ � � � \ Hp5
. Since TCA is contained in the locus of cubics
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double at p, the cubic C 0 must contain L1 and L2, so any tangent vector to A contained
in the hyperplanes Hpi

must be of the form

d�.L1;L2;L3/.H1;H2;H3 C �H
0
3/ D H1H2H3 C �.H1H2H

0
3/:

Since the tangent vector .H1;H2;H3 C �H 03/ lies in T.L1;L2;L3/ˆ, the linear form H 03
must vanish at p and so must be a multiple of H3; thus C 0 D C .

Thus the degree of A is simply the number of asterisks containing p1; : : : ; p5; by
Exercise ?? this is 1

2

�
5

2;2;1

�
D 15.

Exercise 1.33. ?? Show that (in characteristic¤ 3) the locus Z � P9 of triple lines is
a cubic Veronese surface, and deduce that its degree is 9.

Solution to Exercise ??: This is the same content as the remark right before Proposition
??.

Exercise 1.34. ?? Let X � P9 be the locus of cubics of the form 2LCM for L and
M lines in P2.

(a) Show that X is the image of P2 � P2 under a regular map such that the pullback of
a general hyperplane in P9 is a hypersurface of bidegree .2; 1/.

(b) Use this to find the degree of X .

Solution to Exercise ??: X is the image of P2 � P2 under the map � sending a pair of
linear forms .H; J / to the cubic form H 2J , which is quadratic in the coefficients of H
and linear in the coefficients of J ; hence the first part.

Now, if ˛; ˇ 2 A1.P2 � P2/ are the pullbacks of the hyperplane classes on P2 via
the two projections, and � 2 A1.P9/ the hyperplane class there, by the first part we have

��.�/ D 2˛ C ˇ:

Since the map � is birational onto its image, it follows that the degree of X � P9 is
given by

degX D deg
�
.2˛ C ˇ/4

�
D 22

 
4

2

!
D 24:

Exercise 1.35. ?? If you try to find the degree of the locus X of the preceding problem
by intersecting X with hyperplanes Hp1

; : : : ;Hp4
, where

Hp D fC 2 P9 W p 2 C g;

you get the wrong answer (according to the preceding problem). Why? Can you account
for the discrepancy?
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Solution to Exercise ??: First, the cardinality of the intersection X \Hp1
\ � � � \Hp4

is easy to find: any nonreduced cubic containing all four points must be (after reordering)
the cubic 2 � p1; p2 C p3p4. The number of such cubics is

�
4
2

�
D 6.

What’s wrong? The problem is that, unlike the other examples of this technique,
in this case the hyperplanes Hpi

do not intersect the locus X transversely. By the
calculation analogous to those above, the tangent space to X at the image of .H; J / is
the space of cubics in the ideal .HJ;H 2/, which is contained in the hyperplanes Hp1

and Hp2
.

Exercise 1.36. ?? Let P2 denote the space of lines in the plane, and P5 the space of
plane conics. Let ˆ � P2 � P5 be the closure of the locus of pairs

f.L; C / W C is smooth, and L is tangent to C g:

Show that ˆ is a hypersurface; and, assuming characteristic 0, find its class Œˆ� 2
A1.P2 � P5/.

Solution to Exercise ??: To see that ˆ is a hypersurface, let F D f.p; l/ W p 2 lg �
P2 � P2�, and observe that ˆ is the image of the incidence correspondence

� D f.C;L; p; l/ W C and L are tangent to l at pg � P5 � P2� � F I

the dimension and irreducibility of � are readily seen via projection on the third factor.

As for the calculation of Œˆ�, this is probably best done by the method of undeter-
mined coefficients: if ˛ and ˇ 2 A1.P2 � P5/ are the pullbacks of hyperplane classes,
then we can write

Œˆ� D c˛ C dˇ

for some c; d 2 Z. If C � P2 and D � P5 are general pencils of lines and conics
respectively, the integers c and d are then given as the cardinality of the intersection of
ˆ with the curves C � fC0g and fL0g �D � P2 � P5 respectively—that is, the number
of lines in a general pencil that are tangent to a given conic, and the number of conics in
a general pencil that a tangent to a given line. The answer in both cases is the number of
branch points of a general degree 2 map from P1 to P1; that is, 2. Thus

Œˆ� D 2˛ C 2ˇ:

Exercise 1.37. ?? Now let P9 be the space of plane cubic curves as before, and let
Y � P9 be the closure of the locus of reducible cubics consisting of a smooth conic and
a tangent line. Use the result of the first part to determine the degree of B .
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Solution to Exercise ??: Y is the image, under the map � W P2 � P5 ! P9 of Sec-
tion ??, of the locus ˆ � P2 � P5. Since this map is birational onto its image, and the
pullback of the hyperplane class � 2 A1.P9/ is given by ��.�/ D ˛ C ˇ, we have

deg.Y / D deg
�
��.�/5Œˆ�

�
D deg

�
.˛ C ˇ/5.2˛ C 2ˇ/

�
D 42

Exercise 1.38. ?? Let P14 be the space of quartic curves in P2, and let † � P14 be the
closure of the space of reducible quartics. What are the irreducible components of †,
and what are their dimensions and degrees?

Solution to Exercise ??: First, † has two irreducible components, one whose general
point corresponds to a union of a line and a cubic, and one whose general point corre-
sponds to a union of two conics. These are images of P2 � P9 and P5 � P5 respectively,
under maps that are given by bihomogeneous forms of bidegree .1; 1/. The first map
is birational onto its image, and so the first component has dimension 11 and degree�
11
3

�
D 1650; the second map is finite of degree 2 onto its image, which thus has

dimension 10 and degree 1
2

�
10
5

�
D 126.

Exercise 1.39. ?? Find the dimension and degree of the locus � � P14 of totally
reducible quartics (that is, quartic polynomials that factor as a product of four linear
forms).

Solution to Exercise ??: Here � is the image of the map � W .P2/4 ! P14 sending a
fourtuple of linear forms to their product. Again, if ˛i 2 A1

�
.P2/4

�
are the pullbacks of

the hyperplane class from P2 via the four projections, and � 2 A1.P14/ is the hyperplane
class there, then since the map � is finite of degree 4Š D 24 we have

deg.�/ D
1

24
deg

�
��.�/8

�
D

1

24
deg

�
.˛1 C ˛2 C ˛3 C ˛4/

8
�

D
1

24

 
8

2; 2; 2; 2

!
D 105

Exercise 1.40. ?? Again let P14 be the space of plane quartic curves, and let ‚ � P14

be the locus of sums of four concurrent lines. Using the result of Exercise ??, find the
degree of ‚.
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Solution to Exercise ??: Here ‚ is the image, under the map � of the preceding solu-
tion, of the locus ˆ � .P2/4 described in Exercise ??. Having calculated the class of ˆ
to be

P
i<j ˛i˛j in that exercise, we have

deg.‚/ D
1

24
deg

�
��.�/6Œˆ�

�
D

1

24
deg

0@.˛1 C ˛2 C ˛3 C ˛4/6X
i<j

˛i˛j

1A
D

1

24
� 6 �

 
6

2; 2; 1; 1

!
D 45

Exercise 1.41. ?? Find the degree of the locus A � P14 of the preceding problem, this
time by calculating the number of sums of four concurrent lines containing six general
points p1; : : : ; p6 2 P2, assuming transversality.

Solution to Exercise ??: Given that no three of the points pi are collinear, if a sum of
four lines contains them all then either

(a) two of the lines will each contain two of the points, and the remaining two lines one
each; or

(b) three of the lines will each contain two of the points.

If the four lines are concurrent (and the points general), the latter case can’t occur; thus
the sums of four collinear lines containing p1; : : : ; p6 correspond to the decompositions
of the set fp1; : : : ; p6g into two sets of two and two sets of 1 (take two of the lines to be
the spans of the two pairs; take the remaining lines to be the lines spanned by the point
of intersection of the first two and each of the two remaining points). The number is thus

1

22

 
6

2; 2; 1; 1

!
D 45:

A natural generalization of the locus of asterisks, or of sums of four concurrent lines,
would be the locus, in the space PN of hypersurfaces of degree d in Pn, of cones. We
will indeed be able to calculate the degree of this locus in general, but it will require
more advanced techniques than we have at our disposal here; see Section ?? for the
answer.

Exercise 1.42. ?? Let S � P3 be a smooth surface of degree d and L � S a line.
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Calculate the degree of the self-intersection of the class � D ŒL� 2 A1.S/ by considering
the intersection of S with a general plane H � P3 containing L.

Solution to Exercise ??: A general plane H containing L will intersect S in the union
of L and a curve C � H of degree d � 1; applying Bertini, we can see that C intersects
L transversely. If � 2 A1.S/ is the restriction to S of the hyperplane class in P3, then
we have

� D � � 


where 
 is the class of C ; and

deg.�2/ D deg
�
�.� � 
/

�
D 1 � .d � 1/ D 2 � d:

Exercise 1.43. ?? Let S be a smooth surface. Show that if C � S is any irreducible
curve such that the corresponding point in the Hilbert scheme H of curves on S lies on a
positive-dimensioaln irreducible component of H, then the degree deg.
2/ of the self-
intersection of the class 
 D ŒC � 2 A1.S/ is nonnegative. Using this and the preceding
exercise, prove the statement made in Section ?? that a smooth surface S � P3 of degree
3 or more can contain only finitely many lines.

Solution to Exercise ??: Let B � H be a curve, with the point b 2 B corresponding to
C . If B is rational, we are essentially done: the universal family of curves over B � H
gives a rational equivalence between C and the curve C 0 corresponding to any point
b0 2 B , and since C and C 0 have no common components their intersection number is
nonnegative.

In general, whatever the genus of B , by Riemann-Roch a high multiple of the the
point b 2 B will be rationally equivalent to a linear combination

P
mibi of other points

of B; if Ci � S is the curve corresponding to bi we see similarly that mC �
P
miCi ;

by the same token deg..m
/2/, and hence deg.
2/, will be nonnegative. (If B is singular
we may work with its normalization.)

So, the Hilbert scheme of lines on a surface S of degree d � 3 is composed by
isolated points (because the self intersection is negative) and they are finite because
Hilbert schemes are proper.

Exercise 1.44. ?? Let C � P3 be a smooth quintic curve. Show that

(a) if C has genus 2, it must lie on a quadric surface;
(b) if C has genus 1, it cannot lie on a smooth quadric surface (in fact, it can’t lie on

any quadric); and
(c) if C has genus 0, it may or may not lie on a quadric surface (that is, some rational

quintic curves do lie on quadrics and some don’t).
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Solution to Exercise ??: For the first part, look at the restriction maps

H 0.OP3.2//! H 0.OC .2//:

h0.OP3.2// D 10, and by Riemann-Roch, h0.OC .2// D 10 � g C 1. So if g D 2, the
restriction map must have a nonzero kernel; that is, C lies on a quadric.

If g D 1, the fact that C can’t lie on a smooth quadric follows from the genus
formula for Q Š P1 � P1.

Finally, there do exist smooth rational quintics lying on a quadric: these are the
curves of type .1; 4/. But a dimension count shows that the space of all rational quintic
curves has dimension 20 (4-tuples of quintic polynomials form a 24-dimensional vector
space; mod scalars and PGL2, the space of image curves in P3 is 24-4=20-dimensional);
while the dimension of the space of curves of type .1; 4/ on a quadric is 9C2 �5�1 D 18
(for the quadric, which is uniquely determined by the curve, and the space of curves of
type .1; 4/ on Q).

Exercise 1.45. ?? Let C � P3 be a smooth quintic curve of genus 2. Show that C lies
on a quadric surface Q and a cubic surface S with intersection Q \ S consisting of the
union of C and a line.

Solution to Exercise ??: As in the last exercise, we start by looking at the restriction
maps

r2 W H
0.OP3.2//! H 0.OC .2// and r3 W H

0.OP3.3//! H 0.OC .3//:

As we found in Exercise ??, the map r2 must have a kernel, corresponding to a quadric
Q containing C (unique, by Bezout, and necessarily irreducible). Similarly, the kernel
of r3 must have dimension at least 5; since the space of products LQ has vector space
dimension 4, there must be a cubic surface S containing C and not containing Q. Q
being irreducible, the intersection Q \ S will have dimension 1; and by Bezout it must
consist of the union of C and a line.

Exercise 1.46. ?? Use the result of Exercise ??—showing that a smooth quintic curve
of genus 2 is linked to a line in the complete intersection of a quadric and a cubic—to
find the dimension of the subset of the Hilbert scheme corresponding to smooth curves
of degree 5 and genus 2.

Solution to Exercise ??: Here we want to look at the incidence correspondence ˆ of
four-tuples .Q; S; C;L/ consisting of a quadric surface Q, a cubic surface S , a smooth
quintic curve of genus 2 and a line L such that

Q \ S D C [ L:

We can calculate the dimension of ˆ via its projection to the last factor, and from that
find that the space of smooth quintics of genus 2 has dimension 20.
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Exercise 1.47. ?? Let X � P4 be the affine cone defined by xy � uv D 0. Show that
the conclusion of Theorem ?? fails.

Hint: on one hand, consider the intersection between the plane � D V.x; u/ and
the line L1 D V.y; v; w/; on the other hand, consider the intersection between � and
the line L2 D .x; v; w/. Then, show that the two lines are rationally equivalent, using
transitive property of rational equivalence.

Solution to Exercise ??: Let � be the plane .x; u/, and L1 and L2 the lines .y; v; w/
and .x; v; w/. It’s easy to show that the intersection �[L1 is empty, and the intersection
� [ L2 is transverse and one point. Any intersection product on A�.X/ satisfying
Theorem ?? should then satisfy

deg.Œ�� � ŒL1�/ D 0 and deg.Œ�� � ŒL1�/ D 1

because both intersection are transverse. We will show now that the two lines L1 and
L2 are indeed rationally equivalent in A2.X/, so that the two conditions above lead to
an absurd; the rational equivalence will be a composition of two. The first is inside the
plane .y; v/ from L1 to the line .x; y; v/; the second inside the plane .x; v/ from the
line .x; y; v/ to L2. Note that both planes are contained in X , so this actually gives a
rational equivalence L1 � L2, and the claim follows.

1.3 Chapter 3
Exercise 1.48. ?? Let ƒ and � 2 G be two points in the Grassmannian G D G.k; V /.
Show that the line ƒ;� � P.^kV / is contained in G if and only if the intersection
ƒ \ � � V of the corresponding subspaces of V has dimension k � 1.

Solution to Exercise ??: If dim.ƒ\�/ D k�1, than we can choose a basis v1; : : : ; vn
of V such that in P.^kV /

Œƒ� D Œv1 ^ : : : ^ vk�1 ^ vk� and Œ�� D Œv1 ^ : : : ^ vk�1 ^ vkC1�:

In this way, elements in the line joining Œƒ� and Œ�� are given by tensors

Œv1 ^ : : : ^ vk�1 ^ .˛vk C ˇvkC1/�

that are still pure tensors in P.^kV /, so that the line is all contained in G.k; V /. Con-
versely, suppose dim.ƒ \ �/ D h < k � 1, and let’s again choose a basis of V such
that

Œƒ� D Œv1^ : : :^vh^vhC1^ : : :^vk� and Œ�� D Œv1^ : : :^vh^vkC1^ : : :^v2k�h�:
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Let’s consider now a general element of the line �;ƒ, given by

Œ�� D Œv1 ^ : : : ^ vh ^ .˛vhC1 ^ : : : ^ vk C ˇvkC1 ^ : : : ^ v2k�h�:

It’s easy to see that if both ˛ and ˇ are nonzero, the map V
^�
��! ^kC1V has rank

n� h � n� k (this can be seen explicitely checking the wedge products �^ vi ), so that
this is not an element of G.k; V /.

Exercise 1.49. ?? Using the fact that the Grassmannian

G D G.k; V / � P.^kV /

is cut out by quadratic equations, show that if Œƒ� 2 G is the point corresponding to a
k-plane ƒ then the tangent plane TŒƒ�G � P.^kV / intersects G in the locus

G \ TƒG D f� W dim.� \ƒ/ � k � 1g I

that is, the locus of k-planes meeting ƒ in codimension 1.

Solution to Exercise ??: It’s easy to see that every line contained in G through Œƒ� is
contained in TƒG, and the union of lines through Œƒ� is exactly the locus of planes
meeting ƒ in dimension k � 1 from Exercise ??, so we have the inclusion

G \ TƒG � f� W dim.� \ƒ/ � k � 1g :

To see the other inclusion, let � be a point in G \ TƒG; this means that the line �;ƒ
intersects G in (at least) the two points � and ƒ; this line is contained in the linear space
TƒG, so it’s tangent to G at ƒ; the intersection multiplicity of the line �;ƒ with G is
at least 3. Now, we know that G is the intersection of quadric hypersurfaces in P.^kV /;
the line �;ƒ intersect with multiplicity at least 3 all these hypersurfaces; by Bezout’s
theorem then, this line is contained in all these hypersurfaces, so is contained in G; �
belongs to a line in G through ƒ, so the claim follows.

Exercise 1.50. ?? Consider the universal k-plane over G D G.k;PV /:

ˆ D f.ƒ; p/ 2 G � PV jp 2 ƒg;

whose fiber over a point Œƒ� 2 G is the k-plane ƒ � PV . Show that this is a closed
subvariety of G �PV of dimension kC .kC 1/.n� k/, and that it’s cut out on G �PV
by bilinear forms on P.^kV / � PV .

Solution to Exercise ??: Let’s consider the natural bilinear map ^kV ˝ V ! ^kC1V ,
and let’s consider in ^kV ˝ V the inverse image of zero of this map; this leads to a
subvariety of P.^kV / � PV cut out by bilinear forms. The fiber over a point Œ�� of
P.^kV / is given by all vectors Œv� such that � ^ v D 0, so that over a point ƒ of G we
find exactly the vector space ƒ � PV . Restricting over G, then, we find the universal
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plane ˆ as closed subvariety. Considering the projection onto G, we easily find that is
irreducible, and of dimension k C .k C 1/.n � k/.

Exercise 1.51. ?? Use the preceding exercise to show that if X � Pn is any subvariety
of dimension l < n � k, then the locus

�X D fƒ 2 G.k; n/ jX \ƒ ¤ ¿g

of k-planes meeting X is a closed subvariety of G.k; n/ of codimension n � k � l .

Solution to Exercise ??: Using the previous exercise, let ˆ � P.^kV / � Pn be the
universal plane. The inverse image of X from the second projection is the locus

Q�X D f.ƒ; p/ jp 2 ƒ;p 2 Xg

so its projection in P.^kV / will be the locus �X . By properness of the projection of
the first projection, this locus is a closed subvariety. To find its dimension, note that the
projection Q�X ! X is a fibration, whose fibers are all the k-planes through a given point,
that is, k.n � k/ dimensional (this also proves that Q�X is irreducible); the dimension
of Q�X is then k.n � k/C l ; if we prove that the projection Q�X ! �X is generically
finite, then the claim about the dimension of �X follows. Now, the general n � l-plane
intersects X in finitely many points: inside these planes, we can easily find a k-plane
that intersects X in finitely many points as well, that, together with the irreducibility of
Q�X , proves the assertion.

Exercise 1.52. ?? Let l < k < n, and consider the locus of nested pairs of linear
subspaces of Pn of dimensions l and k:

F.l; kIn/ D f.�;ƒ/ 2 G.l; n/ �G.k; n/ j� � ƒg:

Show that this is a closed subvariety of G.l; n/ �G.k; n/, and calculate its dimension.
(These are examples of a further generalization of Grassmannians called flag manifolds,
which we’ll explore further in Section ??.)

Solution to Exercise ??: We will solve this exercise using a method that will be the
main content in Chapter 5 (and more), getting F.l; kIn/ as vanishing locus of a section
of a vector bundle, that will automatically prove this is a closed subvariety. On G.l; n/�
G.k; n/, we have the following natural diagram of vector bundles

0 - ��1Sl
�l- ��1 .OG.l;n/ ˝ V /

pl- ��1Ql - 0

0 - ��2Sk
�k- ��2 .OG.k;n/ ˝ V /

�
?

pk- ��2Qk - 0

where the two middle vector bundles are canonically the same (trivial bundle); let’s
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consider the composition

pk ı �l W �
�
1Sl ! ��2Qk :

On the fiber over a couple .�;ƒ/, this is the canonical map � ! V=ƒ, and is zero
exactly whether � � ƒ, that means, over the flag variety. Seeing this map as a section
of the vector bundle .��1Sl/� ˝ ��2Qk , we get flag variety is the zero locus of a section
of this bundle, so is a closed subvariety. To find the dimension, it’s easy to get by the
projection onto any of the two factors that the dimension is .n�k/.lC1/�.l�k/2.

Exercise 1.53. ?? Again let l < k < n, and for any m � l consider the locus of pairs
of linear subspaces of Pn of dimensions l and k intersecting in dimension at least m:

F.l; kImIn/ D f.�;ƒ/ 2 G.l; n/ �G.k; n/ j dim.� \ƒ/ � mg:

Show that this is a closed subvariety of G.l; n/ �G.k; n/, and calculate its dimension.

Solution to Exercise ??: Consider the flag manifolds F.m; l In/ and F.m; kIn/ as in
the previous exercise. We can consider the intersection

F.m; l In/ �G.k; n/ \G.l; n/ � F.m; kIn/ � G.l; n/ �G.m; n/ �G.k; n/

that will consist of the locus

‰ D f.�;†;ƒ/ j† � �;† � ƒg

and when we project it to G.l; n/�G.k; n/ we get the desired locus as closed subvariety.
By the projection onto the middle coordinate, it’s easy to get that the dimension of ‰ is

.n �m/.mC 1/C .n � l/.l �m/C .n � k/.k �m/:

Then, the projection ‰ ! F.l; kImIn/ is generically one-to-one (because the locus
where the fiber is not one point, that is, when the dimension of intersection is higher, is
less dimensional), so that the dimension of F.l; kImIn/ is the same.

Exercise 1.54. ?? Assume that the characteristic of our ground field is 0. Let B �
G.1; n/ be a curve in the Grassmannian of lines in Pn, with the property that all nonzero
tangent vectors to B have rank 1. Show that the lines in Pn parametrized by B either

(a) all lie in a fixed 2-plane;
(b) all pass through a fixed point; or
(c) are all tangent to a fixed curve C � Pn.

(Note that the last possibility actually subsumes the first.)

Solution to Exercise ??: Let ˆ � G.1; n/ � Pn be the universal line over G.1; n/; at
every point L of B , the tangent vector in G.1; n/ has one dimensional kernel, so we
can associate to it one point of L in the fiber of the universal line; we then get a map
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g W B ! ˆ obtained in this way (one should prove that this is actually an algebraic
morphism though); projecting to the second factor Pn, we get a map f W B ! Pn,
whose image we will call C . This curve C is composed by all points “around which” the
line L locally rotates as we move along B (the rank 1 condition is exactly the condition
of locally rotating around a point). If C is a point p, all lines corresponding to points of
B contain p, so we are in situation (b); let’s suppose now C is a curve: we will prove
that for every point Œ�� 2 B , we have Tf .�/C D L, so that all points of B correspond to
lines tangent to the curve C constructed in this way. Let now .L; p/ 2 ˆ, let’s describe
its tangent space inside

TLG.1; n/ � TpPn D Hom. QL; V= QL/ �Hom. Qp; V= Qp/I

this is given by couples .˛; ˇ/ such that the following diagram commutes

Qp
ˇ- V= Qp

QL

�
?

˛- V= QL

p
?

where vertical arrows are the natural ones. Now, we have that for points in g.B/, the
composition ˛ ı � D p ı ˇ is zero, because p is chosen to be in the kernel of ˛; this
means then that the image of ˇ is the space QL= Qp; but once we project onto Pn, the
tangent space to C is just given by ˇ, and its image will determine the tangent line in
Pn; in this case then, the tangent line is exactly L, so the claim follows.

Exercise 1.55. ?? Show that an automorphism of G.k; n/ carries tangent vectors to
tangent vectors of the same rank (in the sense of Section ??), and hence that in case
1 < k < n the group of automorphisms of G.k; n/ cannot act transitively on nonzero
tangent vectors. Show, on the other hand, that the group of automorphisms of G.k; n/
does act transitively on tangent vectors of a given rank.

Solution to Exercise ??: The action of PGL.V / on G.k; n/ extends to a linear action
on the total space of the tangent bundle TG.k; n/. If .�; v W � ! V=�/ is an element
of TG.k; n/, and ' 2 PGL.V /, then

'.�; v/ D .'.�/; ' ı v ı '�1/

where the last homomorphism is obtained by the following diagram

�
v - V=�

'.�/

'
? ' ı v ı '�1- V='.�/

'
?

so that the rank of v can’t change. Moreover, through this description, is an easy exercise



28 Chapter 1 Solutions to Selected Exercises

in linear algebra proving that this action is indeed transitive on tangent vectors of given
rank.

Exercise 1.56. ?? In Example ??, we showed that the open Schubert cell †ı1 D †1 n
.†2 [ †1;1/ is isomorphic to affine space A3. For each of the remaining Schubert
indices a; b, show that the Schubert cell †ı

a;b
� G.1; 3/ is isomorphic to affine space of

dimension 4 � a � b.

Solution to Exercise ??: This exercise is left to the reader.

Exercise 1.57. ?? Consider the Schubert cycle

†1 D fƒ 2 G.1; 3/ jƒ \ L ¤ ¿g:

Suppose ƒ 2 †1 and that ƒ ¤ L, so that ƒ \ L is a point q and the span ƒ;L a plane
K. Show that ƒ is a smooth point of †1, and that its tangent space is

Tƒ.†1/ D f' 2 Hom. Qƒ;V= Qƒ/ j'. Qq/ � QK= Qƒg:

Solution to Exercise ??: This exercise and the following are particular cases of The-
orem ?? in next chapter. As in there, we will solve this exercise choosing a suitable
coordinate system. Let x0; x1; x2; x3 be coordinates such that ƒ D V.x2; x3/ and
L D V.x1; x3/. Let’s pick � D V.x0; x1/ and let’s work in the affine chart U� . Here,
we have coordinates a; b; c; d such that the point .a; b; c; d/ corresponds to the span
of Œ1; 0; a; b� and Œ0; 1; c; d �. As in Proposition ??, we can identify U� with TƒG.1; 3/
and under this correspondence, the point .a; b; c; d/ correspond to the morphism

�
' - V=�

.1; 0; 0; 0/ - .0; 0; a; b/C �

.0; 1; 0; 0/ - .0; 0; c; d/C �:

Now, we can characterize in these coordinates the condition of meeting L; the condition
is just for the four points Œ1; 0; a; b�, Œ0; 1; c; d �, Œ1; 0; 0; 0� and Œ0; 0; 1; 0� (the two latter
spanning L) to be coplanar; the condition is then of the determinant of the resulting
matrix being zero, that is, b D 0. Reading this condition in TƒG.1; 3/, this is the
condition of .1; 0; 0; 0/ to land in V.x4/, that is, '. Qq/ � QK= Qƒ.

Exercise 1.58. ?? Consider the Schubert cycle

†2;1 D †2;1.p;H/ D fƒ 2 G.1; 3/ jp 2 ƒ � H g:

Show that †2;1 is smooth, and that its tangent space at a point ƒ is

Tƒ.†2:1/ D f' 2 Hom. Qƒ;V= Qƒ/ j'. Qp/ D 0 and Im.'/ � QH= Qƒg:
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Solution to Exercise ??: As the previous exercise, this is a particular case of Theo-
rem ??. In this case though, we can work more directly, as in Proposition ??; this is
because in both cases the Schubert cycles are linear spaces in the Plücker embedding.
As in Proposition ??, let’s work in an open set U� , that we can identify with TƒG.1; 3/.
Inside V Š Qƒ ˚ � , we have the linear spaces that are still in †2;1, as the ones still
containing the line Qp, and still contained in the space QH ; looking at them as graphs
of linear functions Qƒ ! � Š V=ƒ, we get the two desired conditions '. Qp/ D 0 and
'. Qƒ/ � QK= Qƒ, from which smoothness follows by dimensional considerations.

Exercise 1.59. ?? Use the preceding two exercises to show in arbitrary characteristic
that general Schubert cycles †1 and †2;1 � G.1; 3/ intersect transversely, and deduce
the equality deg.�1 � �2;1/ D 1.

Solution to Exercise ??: Let ƒ be the intersection of two general Schubert cycles †1
and †2;1. On tangent spaces, we have

Tƒ.†1/ D f' 2 Hom. Qƒ;V= Qƒ/ j'. Qq/ � QK= Qƒg

Tƒ.†2:1/ D f' 2 Hom. Qƒ;V= Qƒ/ j'. Qp/ D 0 and Im.'/ � QH= Qƒg

for general p; q;K;H ; we can choose then p and q to generate ƒ, and H and K to be
independent in V= Qƒ. Gluing the two conditions, that is, intersecting the tangent spaces,
we get

'. Qp/ D 0 and '. Qq/ � QK= Qƒ \ QH= Qƒ D 0

so the cycles are indeed transverse, and together with Theorem ?? the claim follows in
every characteristic.

Exercise 1.60. ?? Let L1; : : : ; L4 � P3 be four pairwise skew lines, and ƒ � P3 a
line meeting all four; set

pi D ƒ \ Li and Hi D ƒ;Li :

Show that Œƒ� 2 G fails to be a transverse point of intersection of the Schubert cycles
†1.Li / exactly when the cross-ratio of the four points p1; : : : ; p4 2 ƒ equals the
cross-ratio of the four planes H1; : : : ;H4 in the pencil of planes containing ƒ.

Solution to Exercise ??: Looking at tangent spaces, we have

Tƒ†1.Li / D f' 2 Hom. Qƒ;V= Qƒ/ j'. Qpi / � QHi= Qƒg

Having a nonzero element in the intersection correspond to have a morphism ƒ !

P.V Qƒ/ sending pi to ŒHi � for every i . Such a morphism exists if and only if the two
cross ratios are the same, and this of course does not happen if the lines are general.
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C
L

Figure 1.1 Deformation of a line L preserving contact with a curve C .
??

Exercise 1.61. ?? Let C � P3 be any curve, and L � P3 a line meeting C at one
smooth point p of C and not tangent to C . Show that the cycle �C � G.1; 3/ of lines
meeting C is smooth at the point ŒL�, and that its tangent space at ŒL� is the space
of linear maps QL ! K4= QL carrying the one-dimensional subspace Qp � QL to the
one-dimensional subspace . QTpC C QL/= QL of K4= QL (see Figure ??).

Solution to Exercise ??: As in Exercise ??, let’s choose coordinates x0; x1; x2; x3 and
a line � such that ƒ D V.x2; x3/, TpC D V.x1; x3/, � D V.x0; x1/ and both U� and
TƒG.1; 3/ have coordinates .a; b; c; d/; as above, the point .a; b; c; d/ will correspond
to the line

V.x2 � ax0 � cx1; x3 � bx0 � dx1/:

Let’s express C , locally around q, as a complete intersection of two homogeneous
polynomials r and s in P3 of degrees d and e respectively; In our coordinate system,
these two polynomials have can’t include either monomials xd0 and xe0 (so that they
contain q) or monomials xd�10 x2 and xe�10 x2 (so that their intersection have tangent
space TpC at p). The condition on a; b; c; d to meet C translates into the variety

V.r; s; x2 � ax0 � cx1; x3 � bx0 � dx1/

being nonempty; this means, the two homogeneous polynomials

Qr.x0; x1/ D r.x0; x1; ax0 C cx1; bx0 C dx1/

Qs.x0; x1/ D s.x0; x1; ax0 C cx1; bx0 C dx1/

having a common root. We can use then the theory of resultants, that will be treated
in Chapter ??; calling r0; : : : ; rd ; s0; : : : ; se the coefficients of the polynomials Qr and Qs
above (note that these coefficients are indeed polynomials in a; b; c; d ), the condition on
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a; b; c; d for Qr and Qs to have a common root is the vanishing of the determinant of the
following matrix:0BBBBBBBBBBBBBBBBBBBBBB@

r0 r1 : : : : : : rd 0 0 : : : : : : 0

0 r0 r1 : : : rd�1 rd 0 : : : : : : 0
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::

0 0 : : : : : : r0 r1 : : : : : : : : : rd
s0 s1 : : : : : : se�1 se 0 0 : : : 0

0 s0 s1 : : : se se�1 se 0 : : : 0
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

0 0 : : : : : : : : : se�dC1 : : : : : : : : : se

1CCCCCCCCCCCCCCCCCCCCCCA

:

We are interested only in the linear parts of this equation in a; b; c; d , that will give us
the condition on the tangent space; it’s easy to show, from the conditions on r and s,
that r0 and s0 have linear part consisting on a scalar multiple of b; further calculations,
involving the fact that the intersection V.r/\ V.s/\ � is tranverse, show that the linear
part of this determinant is indeed just a scalar multiple of b; the condition on the tangent
space is then b D 0, and the claim follows as in Exercise ??.

Exercise 1.62. ?? Let B1; : : : ; B4 � P3 be four irreducible curves, and let '1; : : : ; '4 2
PGL4 be four general automorphisms of P3; let Ci D 'i .Bi /. Show that the incidence
correspondence

ˆ D
˚
.'1; : : : ; '4; L/ 2 .PGL4/

4
�G.1; 3/ j L \ 'i .Bi / ¤ ¿ 8i

	
is irreducible.

Solution to Exercise ??: First, a preliminary lemma: given p; q points of P3, the sub-
variety of PGL4 of automorphism sending p to q is irreducible; if p D q, then this is
the subgroup F ix.p/ of dimension 12, so it’s irreducible; if p ¤ q, this is the subvariety
' � Fix.p/, for ' any automorphism sending p to q, so is a translate of F ix.p/, so it’s
irreducible as well (this lemma can be generalized in many directions), of dimension 12.
Let’s consider now the bigger incidence correspondence

‰ D
˚
.'1; : : : ; '4; p1; : : : ; p4; q1; : : : ; q4; L/ 2

2 .PGL4/
4
� .P3/4 � .P3/4 �G.1; 3/ j pi 2 Bi ; 'i .pi / D qi ; qi 2 L

	
that projects onto ˆ via the projection onto the first and the fourth factor �1;4. Let’s
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project now onto the last three factors

.P3/4 � .P3/4 �G.1; 3/I

the fiber over every point is the subvariety of .PGL4/4 sending pi to qi for i D 1; 2; 3; 4,
irreducible of dimension 48 because of the preliminary lemma. Projecting down again
onto the last two factors

.P3/4 �G.1; 3/;

the fibers now are just the product of the four curves Bi , so fibers are irreducible again
of dimension 4 by hypothesis. Projecting down again onto the last factor

G.1; 3/;

fibers are now 4-tuples of points on lines, so a product of four P1, so irreducible
again; the image is the whole G.1; 3/, irreducible. Concluding, we built up ‰ from
three successive fibrations with irreducible fibers, with an irreducible base: ‰ is then
irreducible, of dimension 60, so as is image by �14, that is, ˆ.

Exercise 1.63. ?? Let B1; : : : ; B4 � P3 be four curves, and '1; : : : ; '4 � PGL4 four
general automorphisms of P3; let Ci D 'i .Bi /. Show that the set of lines L � P3

meeting C1, C2, C3 and C4 is finite; and that for any such L

(a) L meets each Ci at only one point pi ;
(b) pi is a smooth point of Ci ; and
(c) L is not tangent to Ci for any i .

Solution to Exercise ??: Let’s keep the notation of Exercise ??; we have that ‰ is 60-
dimensional and irreducible, and projects onto .PGL4/4 that is 60-dimensional as well.
So, either the map is generally finite of a given degree, or it has positive dimensional
fibers and is not surjective; there are many ways of showing that the latter can’t actually
happen; one is appealing to principle (a) in Section 1.1.2: fibers are the set (actually,
surjects onto)

�'1.B1/ \ �'2.B2/ \ �'3.B3/ \ �'4.B4/

whose intersection number is positive; hence, this intersection is nonempty for every
element of .PGL4/4, so the projection is indeed surjective and the general fiber is finite.
Let’s prove now the second statement; to prove (a), consider the following incidence
correspondence:

‰j;secant D
˚
.'1; : : : ; '4; p1; : : : ; p4; Qpj ; q1; : : : ; q4; Qqj ; L/ 2

2 .PGL4/
4
� .P3/5 � .P3/5 �G.1; 3/ j

j pi 2 Bi ; Qpj 2 Bj ; Qpj ¤ pj ; 'i .pi / D qi ; 'j . Qpj / D Qqj ; qi 2 L; Qqj 2 L
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of situations in which L meets the curve 'j .Bj / also anothe point Qqj ; a calculation as
in the previous exercise shows that ‰j;secant is indeed 59-dimensional; its projection
onto .PGL4/4 won’t be dominant, so the general fiber will avoid situation .a/ for
j D 1; 2; 3; 4. To prove (b) and (c), we consider the incidence correspondences

‰j;sing D
˚
.'1; : : : ; '4; p1; : : : ; p4; q1; : : : ; q4; L/ 2

2 .PGL4/
4
� .P3/4 � .P3/4 �G.1; 3/ j

j pi 2 Bi ; pj 2 Sing.Bj /; 'i .pi / D qi ; qi 2 L
	

‰j;tang D
˚
.'1; : : : ; '4; p1; : : : ; p4; q1; : : : ; q4; L/ 2

2 .PGL4/
4
� .P3/4 � .P3/4 �G.1; 3/ j

j pi 2 Bi ; pj … Sing.Bj /; 'i .pi / D qi ; qi 2 L; L D Tqj
Cj
	

that again is easy to prove are respectively 59 and 58 dimensional. The claim then
follows as for (a).

Exercise 1.64. ?? Let C1; : : : ; C4 � P3 be any four curves, and L � P3 a line meeting
all four and satisfying the conclusions of Exercise ??. Use the result of Exercise ?? to
give a necessary and sufficient condition that the four cycles �Ci

� G.1; 3/ intersect
transversely at ŒL�, and show directly that this condition is satisfied when the Ci are
general translates of given curves.

Solution to Exercise ??: From the hypothesis, we can apply Exercise ??; calling qi D
L \ Ci , we have

TŒL��Ci
D f˛ W QL! V= QL j ˛. Qqi / � . QTqi

Ci C QL/= QLg:

The condition of the intersection of these four being 0 follows from Exercise ??; to be
more precise, if the four lines Tqi

Ci are skew, then the condition is of the two cross ratios
to be different. If the four lines are not skew, one can check case by case what situations
are admissible and which are not. Let’s go back to the previous exercise then, and show
that if '1; : : : ; '4 are general, we have the four points qi different, and the four planes
Tqi

Ci C L different (these two conditions together assure the four lines being skew)
and the cross ratios different too. From our analysis of the incidence correspondence
‰ in Exercise ??, it’s easy to see that the the subset for which the qis are different
each other is open. About the four planes, we have to consider the following incidence
correspondence

‰j1;j2;coplanar D
˚
.'1; : : : ; '4; p1; : : : ; p4;H; q1; : : : ; q4; L/ 2

2 .PGL4/
4
� .P3/4 � P3� � .P3/4 �G.1; 3/ j
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j pi 2 Bi ; 'i .pi / D qi ; qi 2 L � H; Tqj1
Cj1
� H; Tqj2

Cj2
� H

	
that by arguments as in previous exercises is 59-dimensional, so for general translates,
the tangent lines are actually skew. Finally, consider the incidence correspondence

‰f D
˚
.'1; : : : ; '4; q1; : : : ; q4;H1; : : : ;H4; L/ 2

2 .PGL4/
4
� .P3/4 � .P3�/4 �G.1; 3/ j

j qi D L \ 'i .Bi /; Hi D LC Tqi
'i .Bi /; conditions (a), (b), (c) hold

	
where conditions (a), (b), (c) refer to Exercise ??. This projects dominantly onto
.PGL4/

4 again; let’s look at the map CR W ‰f ! P1 � P1 given by the two croos
ratios of the qi s and the Hi s; we are interested in the inverse image of P1 � P1 n�, that
is, situations in which the two cross ratios are different. If we show that CR is dominant,
we are done, because then having different cross ratios will be an open condition. But
this is easy to show: once we project onto

.P3/4 � .P3�/4 �G.1; 3/;

we get all possible 4-tuples of points and 4-tuples of planes containing th same line, so
all cross ratios will appear.

Exercise 1.65. ?? Let C � P3 be a smooth curve, and p 2 P3 a general point. Show
that

(a) p does not lie on any tangent line to C ;
(b) p does not lie on any trisecant line to C ; and
(c) p does not lie on any stationary secant to C ; that is, a secant line q; r to C such that

the tangent lines TqC \ TrC ¤ ¿.

Deduce from these facts that the projection �p W C ! P2 is birational onto a plane
curve C0 � P2 having only nodes as singularities.

Solution to Exercise ??: It’s easy to see that points lying on a tangent line to C are a
subset of dimension 2 of P3, so a general point doesn’t lie on it; if one want to make
things precise, the incidence correspondence

ˆtang D f.p; q/ 2 P3 � C j p 2 TqC g

has one dimensional fibers over C , so it has dimension 2 and can’t dominate P3.

About point (b), suppose trisecant lines cover an open subset of P3; then, the locus
of trisecant lines to C in G.1; 3/ should be at least two dimensional; in fact, any curve
in G.1; 3/ sweep out only a surface in P3, for obvious reasons. Now, locus of bisecant
lines to a smooth curve in P3 is a surface in G.1; 3/, with a map from C .2/ into it, so
irreducible; if the locus of trisecant lines is two dimensional, it must be the same as the
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locus of bisecant lines; in other words, all bisecant lines to C are indeed trisecant. Let’s
now take a general hyperplane section of C ; this consists of d points in a plane, and
the above condition means that every line containing two of them does contain three
of them. But for a general hyperplane section of a smooth curve, we have the general
position lemma ?? (also in ?], III.1, pag. 109), that says that the points are in general
position; thus, no three of them can be collinear; this is an absurd.

About point (c), as for point (b), for stationary secants to cover an open subset of P3,
all secants have to be stationary, that means, every two tangent lines to C intersect. Now,
it is easy to show that any subset A � G.1; 3/ of pairwise intersecting lines is either
contained in the set of lines in a given plane, or through a given point. In the first case
the curve itself is planar, so a general point will not lie in any secant to it; the second
case is impossible for smooth curves unless C is a line (so, planar again).

To conclude, the projection map will be injective on tangent spaces by point (a), at
most 2 to 1 by point (b), and in case of two points mapping into one, it consists of two
transverse branches by point (c); the map is then the (birational) map onto a nodal plane
curve.

Exercises ??-?? deal with the approach, described in Section ??, to calculating
the class of the variety †C � G.1; 3/ of lines incident to a space curve C � P3

by specialization. Recall from that section that we choose a general plane H � P3

meeting C at d points pi and a general point q 2 P3, and let fAtg be the one-parameter
subgroup of PGL4 with attractor q and repellor H ; we let Ct D At .C / and take
‰ � A1 �G.1; 3/ to be the closure of the locus

‰ı D f.t; ƒ/ j t ¤ 0 and ƒ \ Ct ¤ ¿g:

Exercise 1.66. ?? Show that the support of the fiber ‰0 is exactly the union of the
Schubert cycles †1.pi ; q/.

Solution to Exercise ??: At first, by Exercise ??, the limit C0 is the union of the lines
pi ; q. Let now f W A1t ! G.1; 3/ be a curve in the Grassmannian such that its graph is
contained in ‰; in other words, such that f .t/ intersect Ct for t ¤ 0; it is easy to show
now, for instance using an incidence correspondence, that in this situation f .0/ does
intersect C0, that is, the union of the lines pi ; q; this tells us that the support of the fiber
‰0 is contained in the union of the cycles †1.pi ; q/. To prove the other inclusion, let L
a general line in †1.pi0 ; q/; so, the line will intersect pi0 ; q in a point r ; let’s pick also
a general other point s on L, away from all curves Ct . Let’s show that L is indeed in the
limit ‰0, that is, can be obtained as limit of lines in ‰t ; we know that r is in the limit of
the curves Ct , so we have an arc r.t/ such that r.t/ 2 Ct for t ¤ 0 and r.0/ D r . If we
consider the family of lines Lt D r.t/; s, we have that Lt 2 ‰t for t ¤ 0, and Lt ! L;
the line L is then in the limit, and the claim follows.
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Exercise 1.67. ?? Show that ‰0 has multiplicity 1 at a general point of each Schubert
cycle †1.pi ; q/.

Solution to Exercise ??: We will apply the following criterion: a component Z in a flat
limit Xt ! X0 inside X � A1 � Pn appear with multiplicity 1 if and only if there exist
a curve f W A1 ! X such that f .t/ 2 Xt and f .0/ 2 Z; this is easy to show, because
in such a case the intersection X \ f0g � Pn is transverse. Note that we already used
this criterion in the previous exercise, when we claimed the existence of the arc r.t/, as
consequence of the fact that the line pi0 ; q has multiplicity 1 as limit of the curves Ct .
But now, the family of lines Lt built in the previous exercise satisfies the criterion for
the family ‰ in the central component †1.pi0 ; q/; the multiplicity is then 1.

Exercise 1.68. ?? Suppose now thatC � P3 is a general rational quartic curve. Describe
the flat limit of the family of cycles �Ct

� G.1; 3/, and in particular show that it has not
any embedded component.

Solution to Exercise ??: Since all cycles �Ct
are Cartier divisors, their flat limit will

be a Cartier divisor too (whose defining polynomial will just be the limit in the projective
space PN of the linear series they belongs to). But now, every cycle †1.pi ; q/ is a
Cartier divisor as well, so is their union; hence, this has to be the flat limit, with no
embedded components. This holds more in general for any curve degenerating to a union
lines through the same point.

Exercise 1.69. ?? Let C � Pr be a smooth curve. Show that the rational map ' W
C .2/ ! G.1; r/ sending a pair of distinct points p; q 2 C to the line p; q actually
extends to a regular map on all of C .2/ by sending the pair 2p to the projective tangent
line TpC . Use this to show that the image of ' coincides with the locus of lines L � Pr

such that the scheme-theoretic intersection L \ C has degree at least 2.

Solution to Exercise ??: Let L be any line in the closure of the image of C .2/ n�; this
arises as limit of lines Lt D p1.t/; p2.t/ for p1.t/; p2.t/ approaching the same point p
along C for t D 0. Let’s show that the limiting line can only be TpL; this, combined
with the fact that C .2/ is smooth along �, will prove that the map is regular on all of
C .2/. But now, the line Lt contains the two points p1.t/; p2.t/ for t ¤ 0; its limit will
thus contain the flat limit of the two points as t approaches 0, that is, the scheme of
degree two contained in C and supported in p; this scheme uniquely determines the line
TpL. The last sentence of the statement is now obvious.

Exercise 1.70. ?? Show by example that the conclusion of the preceding exercise is
false in general if we do not assume C � Pr smooth. Is it still true if we allow C to
have mild singularities, such as nodes?

Solution to Exercise ??: The first conclusion of the previous exercise, about the map
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extending to a regular one all over C .2/, is false even if the singularity is al mild as
possible; in fact, this is false for any nodal curve: all lines through the node n appear
as limit, so the doesn’t extend to a regular map at the point .n; n/ of C .2/; note that in
case of a cusp the map does extend, as in case of any unibranch singularity. The second
conclusion of Exercise ??, about the closure of the image of C .2/ is the locus of lines
having degree of intersection at least 2, fails for cusps: in fact, this locus includes also all
lines through the singular point in the plane in which the cusp is (locally) contained, that
are not in this closure. This assertion is true though if we allow only nodal singularities
(this can be proved using a locally analytic picture).

Exercise 1.71. ?? Similarly, show by example that the conclusion of Exercise ?? is false
if we consider higher-dimensional secant planes: for example, the image of the map

' W C .3/ ! G.2; r/
p C q C r 7! p; q; r

need not coincide with the locus of 2-planesƒ � Pr whose scheme-theoretic intersection
with C has degree at least 3.

Solution to Exercise ??: Note that the map extends to a regular map to all triples of
points not all coincident, by Exercise ??; to extend it further, let’s follow step by step the
solution of Exercise ??: the only point that we cannot extend to this exercise, is that the
scheme of the degree 3 contained in C and supported in a point need not to determine
uniquely a plane. For points called inflexionary (we will see later in the book lots of
examples of them) this scheme is contained in a line, so that all planes containing the
line are actually intersecting the curve is degree equal to three; so, the map extends to
the points 3p, and the image is the locus of planes with degree 3 intersection, if and
only if there are not inflexionary points; this happens quite rarely though, only for some
very special curves such as rational normal curves. Note that if the curve lies in Pn with
n D 6 or higher, in the presence of an inflexionary points these extra planes with degree
3 intersection consist of a component (a Pn�2) that is higher dimensional than the image
of C .3/; so, the closure of the image can’t be the whole locus.

Exercise 1.72. ?? Show that the smooth locus of S D Sec2.C / contains the locus of
lines L � P3 such that the scheme-theoretic intersection L\ C consists of two reduced
points, and for such a line L identify the tangent plane TLS as a subspace of TLG.
(When is a tangent line to C a smooth point of Sec2.C /?)

Solution to Exercise ??: Let L be a line intersecting C transversely in p and q distinct
points. To prove that S is smooth at L, it’s enough to show that the map Q' W C 2 !
C .2/ ! G is injective on tangent spaces at the point .p; q/, because on .p; q/ the
symmetrization map C 2 ! C .2/ is a local isomorphism. The tangent space to C 2 at
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.p; q/ is

TpC ˚ TqC

so it’s enough to show that the image of these two subspaces in TLG are indipendent.
Taking a vector in either of the two subspaces means for L to keep passing through one
of the two points, and “moving” the other by that tangent vector. In particular, it is easy
to show that

'.TpC ˚ 0/ D f˛ W QL! V= QL j ˛. Qp/ � QTpLC QL= QL; ˛. Qq/ D 0g

'.0˚ TqC/ D f˛ W QL! V= QL j ˛. Qq/ � QTqLC QL= QL; ˛. Qp/ D 0g

and this two spaces are definitely independent (because the intersection is zero), so L is
a smooth point of S ; the tangent space will be the sum of the two above, that means,

TLS D f˛ W QL! V= QL j ˛. Qp/ � QTpLC QL= QL; ˛. Qq/ � QTqLC QL= QLg:

To answer the last question, let L be a not inflexionary tangent to C , with no other
intersection, and osculating plane H ; a slight modification of the previous argument
shows that ' is still injective on tangent spaces, and

TLS D f˛ W QL! V= QL j ˛. QL/ � QH= QLg

so that in the end we get that Sec2.C / is smooth at all lines whose degree of intersection
with C is exactly 2.

Exercise 1.73. ?? Use the result of the preceding Exercise to show that ifC andC 0 � P3

are two general twisted cubic curves, then the varieties Sec2.C / and Sec2.C 0/ �
G.1; 3/ of chords to C and C 0 intersect transversely.

Solution to Exercise ??: LetL be in the intersection Sec2.C /\Sec2.C 0/, intersecting
C in p and q and intersecting C 0 in p0 and q0; by incidence corespondence arguments
such as in Exercises ??-??, we can assume all four points being different, and the
intersections of the line with the curves being transverse. Calling H D TpC C L,
K D TqC C L, H 0 D Tp0C 0 C L and K 0 D Tq0C 0 C L, by similar arguments we
can assume these 4 planes being different. By the same argument as in Exercise ??, we
can also assume the two cross ratios p; q; p0; q0 and H=L;K=L;H 0=L;K 0=L being
different. Then, as in Exercise ??, the claim follows.

Exercise 1.74. ?? Let C � P3 be a smooth, nondegenerate curve, and let L and
M � P3 be general lines.

(a) Find the number of chords to C meeting both L andM by applying the result above;
and
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(b) Verify this count by considering the product morphism

�L � �M W C ! P1 � P1

(where �L; �M W C ! P1 are the projections from L and M ) and comparing the
arithmetic and geometric genera of the image curve.

Solution to Exercise ??: By indetermined coefficients intersecting with �2 and �1;1,
and explicit evaluations on tangent spaces, the class of Sec2.C / in A2.G/ is

ŒSec2.C /� D

  
d � 1

2

!
� g

!
�2 C

 
d

2

!
�1; 1:

Intersecting with two general cycles �1, and again checking on tangent spaces that the
intersection is transverse, we get that the intersection consists of

.d � 1/2 � g

reduced points. About point (b), the class in P1 � P1 of the image of C is .d; d/,
because composing with any of the two projections onto P1 we have a degree d cover;
the arithmetic genus of the image, by adjunction formula, is then .d � 1/2. Comparing
it with the geometric genus g, we get that the sum of all delta invariants of singularities
of the curve is .d � 1/2 � g; supposing it has only nodal singularities, this means that
there are exactly that many nodes. But now, nodes in the image of C correspond exactly
to chords to C meeting L and M , so the claim follows.

Exercise 1.75. ?? Let C � P3 be a smooth, irreducible nondegenerate curve of degree
d , and let ˆ � A1 � P3 be the family of curves specializing C to a scheme supported
on the union of lines joining a point p 2 P3 to the points of a plane section of C , as
constructed in Section ??. Show that C0 may have an embedded point at p, and that
the multiplicity of this embedded point may depend on the genus of the curve C , by
considering the examples of curves of degrees 4 and 5.

Solution to Exercise ??: We will examine only the case of degree 4, and leave the
degree 5 case to the reader. First, note that the specialization C0 is going to have Hilbert
polynomial equal to that of C . Let C be a rational quartic nondegenerate space curve: its
Hilbert polynomial is 4mC 1; the union of 4 lines meeting at a point, no three coplanar,
is the complete intersection of 2 quadric cones, so its Hilbert polynomial can be computer
in this way, to get 4m, in the limit, then, there is an embedded point of multiplicity one
at the node (the embedded point has to be on the singular locus; for a reference about
this, check ?], pag. 763). If as repelling plane we choose a plane containing a trisecant
line, we get a configuration of lines in which three of them are coplanar; the Hilbert
polynomial of this configuration is then 4m � 1, so we will have an embedded point of
multiplicity 2. If C is elliptic of degree 4, however (so, already the complete intersection
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of two quadrics!), the Hilbert polynomial of C is 4m, so in the limit there won’t be any
embedded point.

Exercise 1.76. ?? In the situation of the preceding problem, let Sec2.Ct / � G.1; 3/ be
the locus of chords to Ct for t ¤ 0. Suppose that the degree of C is 4. Show that the
component †2.p/ will be in the flat limit with multiplicity depending on the genus of
C .

Solution to Exercise ??: It is easy to show that the limit of Sec2.Ct / is supported in
the union of the cycles

†2.p/ [
[
i;j

†1;1.pqiqj /

now, using the formula obtained in Exercise ?? for the class of ŒSec2.Ct /�, we get

ŒSec2.Ct /� D .3 � g/�2 C 6�1;1

that proves that †2.p/ appears with mutiplicity 3 if C is rational, and 2 if C is elliptic.
Note that this multiplicity is not the same as the one of the embedded point at p in the
limit of the curves Ct !

Exercise 1.77. ?? Again, suppose C � P3 is any curve of degree d ; choose a general
plane H � P3 and point p 2 P3 and consider the one-parameter group fAtg � PGL4
with repellor point p and attractor plane H—that is, choose coordinates ŒZ0; : : : ; Z3�
on P3 such that p D Œ0; 0; 0; 1� and H is given by Z3 D 0, and consider for t ¤ 0 the
automorphisms of P3 given by

At D

0BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 t

1CCCA :
Let Ct D At .C /, and for t ¤ 0 let Sec2.Ct / � G.1; 3/ be the locus of chords to Ct .
Show that the Schubert cycle †1;1.H/ appears as a component of multiplicity

�
d
2

�
in the

limiting scheme limt!0 Sec2.Ct /. (Hint: let ‰ � A1 �G be the closure of the family

‰ı D f.t; L/ j t ¤ 0 and L 2 Sec2.Ct /g;

and show that if L � H is a general line, then in a neighborhood of the point .0; L/ 2
A1 �G, the family ‰ consists of the union of

�
d
2

�
smooth sheets, each intersecting the

fiber f0g �G transversely in the Schubert cycle †1;1.H/.)

Solution to Exercise ??: Let L be a general line in H , and let C0 be the curve (of
degree d as well) in H that is the flat limit of the curves Ct ; L will meet the curve
transversely in d points that we will label p1; : : : ; pd . We will indicate by pi .�i ; t /
points that are neighbor to pi in the surface obtained glueing the curves Ct ; the parameter
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t will determine the curve Ct , the parameter �i will rapresent a movement inside a single
fiber Ct , and pi D pi .0; 0/; note that the surface is smooth around pi , with �i and t as
local parameters. Let now Ls be a family of lines in ‰ parametrized by a parameter s
such that Ls 2 ‰t.s/ for a certain analytic function t .s/ such that t .0/ D 0, and L0 D L.
The intersection Ls \ Ct.s/ has degree 2 for t .s/ ¤ 0, so for s D 0 the intersection has
to be two reduced points pi ad pj . So, Ct.s/ contains points pi .s/ D pi .�i .s/; t.s// and
pj .s/ D pj .�j .s/; t.s//whose limit are respectively pi and pj , andLs D pi .s/; pj .s/.
So, we get the following

�
d
2

�
sheets

‰i;j D fpi .�i ; t /; pj .�j ; t / 2 G j �i ; �j ; t small enoughg

that are smooth because �i ; �j ; t are local parameters aroundL, and intersect transversely
the zero fiber because t is a local parameter.

Exercise 1.78. ?? Let C and C 0 � Q � P3 be general twisted cubic curves lying
on a smooth quadric surface Q, of types .1; 2/ and .2; 1/ respectively. Show that the
intersection Sec2.C / \ Sec2.C 0/ of the corresponding cycles of chords is transverse.

Solution to Exercise ??: Let L be a common chord; it can’t lie inside Q, otherwise it
would meet one of the cubics in only one point; the intersection L\Q is then composed
of two points p and q; for L to be a common chord for C and C 0, p and q need to be
among the 5 transverse points of intersection in C \ C 0. Last thing to check are tangent
spaces: following Exercise ??, and by the fact that L;TpC and TpC 0 are not coplanar
(otherwise, L would be tangent to Q) and similarly for q, we get that the tangent spaces
are transverse. This gives another proof that the intersection of the two cycles is 10,
coming from the fact that

ŒSec2.C /� D �2 C 3�1;1;

as seen in Exercise ??.

Exercise 1.79. ?? Let C � P3 be a smooth nondegenerate curve of degree d and
genus g, and let T .C / � G.1; 3/ be the locus of its tangent lines. Find the class
ŒT .C /� 2 A3.G.1; 3// of T .C / in the Grassmannian G.1; 3/.

Solution to Exercise ??: LetL be a line that is tangent toC at a point p, with osculating
plane H ; using a local parameter t for C in a neighborhood of p, one can see that

TLT .C / D f˛ W QL! V= QL j ˛. Qp/ D 0; ˛. QL/ � QH= QLg:

So, when we intersect with a general cycle �1, the intersection will be transverse. So,
we are now reduced to find how many lines are tangent to C and meet a general line M .
M is disjoint from C , let’s project away from M ; the resulting map C ! P1 will be
a degree d cover of P1, with 2d C 2g � 2 ramification points, by Riemann-Hurwitz
theorem; these points correspond to planes containing L that are tangent to C , that
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means, containing a line in T .C /. The degree of intersection is then 2d C 2g � 2, so
that we have

ŒT .C /� D .2d C 2g � 2/�2;1:

Exercise 1.80. ?? Let C � P3 be a smooth nondegenerate curve of degree d and genus
g, and let S � P3 be a general surface of degree e. How many tangent lines to C are
tangent to S?

Solution to Exercise ??: Let L be a line tangent to S at a point p, such that TpS D H ;
using local parameters u; v for S around p, one can show that

TLT .S/ D f˛ W QL! V= QL j ˛. Qp/ � QH= QLg:

Let’s find its class in A�.G.1; 3//; at first, the intersection with a general �2;1 is clearly
transverse; so, we need to find lines in a general plane, through a general point, and
tangent to S ; the plane section of S will be a degree e smooth curve, of genus

�
e�1
2

�
;

projecting from a point, we get a degree e cover of P1, with

2e C 2

 
e � 1

2

!
� 2 D e2 � e

ramification points; the class is then

ŒT .S/� D .e2 � e/�1:

Let L be also tangent to the curve C , at a point q, with osculating plane K. To have
the intersection T .C / \ T .S/ transverse at L, we need to have p ¤ q and H ¤ K;
let’s show that from the generality of S , we can deduce both conditions; at first, we can
impose that C and S meet transversely: this will avoid the situation in which p D q.
We can also impose that the intersection between the dual surface S� and the curve of
osculating planes C � are transverse in P3�; this will imply that H ¤ K. So, we just
need to intersect the cycles, getting

#.T .C / \ T .S// D deg.ŒT .C /� � ŒT .S/�/ D .2d C 2g � 2/.e2 � e/:

1.4 Chapter 4
Exercise 1.81. ?? Use the description of the points of the Schubert cells given in
Theorem ?? to show that Theorem ?? holds at least set-theoretically.
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Solution to Exercise ??: Let’s pick a basis and a flag such that

Vi D< e1; : : : ; ei >

as in Theorem ??. By the transitive action of PGL.V / on flags (and on Plücker hyper-
planes) everything will follow for every flag. Now, we want to say that matrices such as
in the pictures of the proof of Theorem ?? are characterized by the vanshing of certain
minors; this is easy to see in the pictures, let’s make it precise. Let †a be a Schubert
cell, and ƒ an element of it; it’s easy to show that, for any basis we choose of ƒ, in the
representing matrix we will have zero minors for every choice of indices i1 < : : : < ik
such that for at least one index ij we have ij > n � k C j � aj : This can be shown
choosing a suitable basis of ƒ such an in the proof of Theorem ?? (considering the
induced flag on ƒ) and noticing that the condition is equivalent for the matrix to be
block lower triangular with a zero on the diagonal. Now we just need to show that the
vanishing locus in G.k; n/ of such coordinates is exactly the Schubert cell. Let ƒ be
a subspace satisfying these conditions, let’s consider the induced flag, and let’s pick
a basis such that the matrix is again in the form above; the fact that all minors with
i1 > n � k C 1 � a1 are zero, means that in the first row the last k � 1C a1 entries are
zero, so that dim.ƒ \ Vn�kC1�a1

/ � 1; working in the same way with every row, we
actually get ƒ 2 †a, and the claim follows (set theoretically).

Exercise 1.82. ?? Let X � G.2; 4/ be an irreducible surface. As we observed in the
preceding problem, we can write

ŒX� D 
2�2 C 
1;1�1;1 2 A
2.G.2; 4//:

Show that if 
2 D 0 then 
1;1 D 1. (In general, it’s not known what pairs .
2; 
1;1/
occur!)

Solution to Exercise ??: Let’s consider the variety Y in P3 swept out by lines in X ;
its dimension should be 3 and its degree given by the intersection number ŒX� � �2 (or
a divisor of it); in our case, this number is 0; this can only mean that Y is indeed a
surface, and is irreducible (because Y D ˇ.˛�1X/ and ˛ has irreducible fibers). This
surface is ruled by lines, and for any point of Y there is a positive dimensional family of
lines through it and contained in Y (otherwise Y would be 3 dimensional); let’s prove
that the only possibility for that is a plane (that would prove 
1;1 D 1); let p a point
of Y ; by hypothesis, a cone with p as vertex and over a curve C is contained in Y ; by
irreducibility of Y , C must be irreducible as well, and Y has to be exactly this cone; but
now if we take another point q on Y , there is only one line contained in Y through it,
unless C is a line, and Y is a plane.

Exercise 1.83. ?? Let S � P4 be a surface of degree d , and �S � G.1; 4/ the variety
of lines meeting S .

(a) Find the class 
S D Œ�S � 2 A1.G.1; 4//.



44 Chapter 1 Solutions to Selected Exercises

(b) Use this to answer the question: if S1; : : : ; S6 � P4 are surfaces of degrees
d1; : : : ; d6, how many lines in P4 will meet all six?

Solution to Exercise ??: Assuming characteristic zero, by Kleiman’s theorem the class
is 
�1, where 
 is the number of points in the intersection with a general �3;2 class; this
means, considering lines in P4 that meet S , and that are in a pencil of lines through a
general point and contained in a general plane P . The points of intersection of S and
P are exactly d , and so we get d such lines; the class is d�1. Without getting involved
in transversality arguments and without using general translates of the surfaces (see
Exercises ??,??,??,?? for a similar treatment), this tells us that the expected number of
lines meeting six such surfaces are d1d2d3d4d5d6 � deg.�61 / D 5d1d2d3d4d5d6:

Exercise 1.84. ?? Let C � P4 be a curve of degree d , and �C � G.1; 4/ the variety of
lines meeting C .

(a) Find the class 
C D Œ�C � 2 A2.G.1; 4//.
(b) Use this to answer the question: if C1; C2 and C3 � P4 are curves of degrees d1; d2

and d3, how many lines in P4 will meet all three?

Solution to Exercise ??: Let’s assume again characteristic zero, and talk about expected
number of lines; again, we suggest the reader interested in all the details to follow step
by step Exercises ??,??,??,??. Now, the class of �C is of the kind


2�2 C 
1;1�1;1;

and we can find the coefficients intersecting with general �3;1 and �2;2 classes. Inter-
secting with �3;1 means finding the number of lines meeting the curve, contained in a
P3, and through a fixed point; the intersection of C with the P3 is d points, so we have
d lines. About the intersection with �2;2, we lok for lines meeting C and contained in a
general 2-plane, and we don’t have any. The class is that d�2. If we intersect three such
classes, we get

d1d2d3 � deg.�
3
2 / D d1d2d3 � deg..�3;1 C �2;2/ � .�2// D d1d2d3:

The following exercise ?? is the first of a series regarding the variety T1.S/ of lines
tangent to a surface S in Pn. More will follow in Exercises ??, ?? and ??.

Exercise 1.85. ?? Let S � Pn be a smooth surface of degree d whose general hyper-
plane section is a curve of genus g and T1.S/ � G.1; n/ the variety of lines tangent to
S . To find the class of the cycle T1.S/, we need the intersection numbers ŒT1.S/� � �3
and ŒT1.S/� � �2;1; find the latter.
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Solution to Exercise ??: For every point p 2 S , we have a 2 dimensional tangent
space, so a P1 of lines through that point tangent to S at p. This means that T1.S/ is a 3
dimensional variety in G.1; n/, so that the cycle is going to be of the form

˛�n�1;n�4 C ˇ�n�2;n�3:

To find the coefficients we have to intersect with general �3 and �2;1 cycles respectively;
a general �2;1 cycle will be composed by lines contained in a general Pn�1, touching
a general Pn�3 inside it. The lines of T1.S/ contained in a Pn�1 are lines tangent to
a general hyperplane section H \ S of S , that is, a curve of degree d and genus g in
Pn�1. The number of such tangent lines meeting a Pn�3 is the same as the number of
ramification points of the projection of the curve H \ S away from Pn�3 onto P1; by
Riemann-Hurwitz theorem, this number is 2d C 2g � 2, so that

ŒT1.S/� � �2;1 D 2d C 2g � 2:

Exercise 1.86. ?? Let Z � G.k; n/ be a variety of dimension m, and consider the
variety X � Pn swept out by the linear spaces corresponding to points of Z: that is,

X D
[
Œƒ�2Z

ƒ � Pn:

For simplicity, assume that a general point x 2 X lies on a unique k-plane ƒ 2 Z.

(a) show that X has dimension kCm and degree the intersection number deg.�m � ŒZ�/.
(b) Show that this is not in general the degree of Z.

Solution to Exercise ??: Let ˆX � G.k; n/ � Pn be the incidence correspondence

ˆX D f.Œƒ�; x/ j Œƒ� 2 Z; x 2 ƒg

just obtained as the preimage of Z from the projection onto G.k; n/ (so it has dimension
k Cm); the variety X is obtained as the image by ˆX the projection onto Pn; now this
projection on ˆX is generically one to one from the hypothesis on the general point x of
X , so X is a closed subvariety of Pn of dimension kCm. Its degree will be given as the
intersection with a general Pn�m�k; note that a general such plane will intersect X in
finitely many points, all lying in differentƒ ofZ (if two linear spaces meet in two points,
they meet along a line!); so, it is the same thing as asking how many of the planes ƒ of
Z intersect a general Pn�m�k , that is the same as finding the intersection between Z
and a �m cycle in G.k; n/. Note that the degree of Z as subvariety of G.k; n/ (and then
by Plücker embedding of PN for some big N ) is obtained intersecting with m generic
hyperplanes, that means, with the cycle �m1 , in general very different from �m!



46 Chapter 1 Solutions to Selected Exercises

Exercises ??-?? deal with the geometry of the surface described in Keynote Ques-
tion (??), whose degree we worked out in Section ??: the surface X � P3 swept out by
the lines corresponding to a general twisted cubic C � G.1; 3/.

Exercise 1.87. ?? To start, use the fact that the dual of G.1; 3/ � P5 has degree 2 to
show that a general twisted cubic C � G.1; 3/ lies on two Schubert cycles †1.L/ and
†1.M/ for some pair of skew lines L;M � P3.

Solution to Exercise ??: A twisted cubic linearly spans a P3, so the hyperplanes in P5

containing it are going to be a pencil in the dual space P5� (that can be seen as the
Grasmannian G.4; 5/). Remember that hyperplane sections of G.1; 3/ correspond to
a �1 cycle if and only if they give a singular section, that means, if they come from
hyperplanes tangent to G.1; 3/; in fact, a singular hyperplane section is a cone over
a quadric surface, so that the vertex determines the line ŒL� such that the hyperplane
section is†1.L/. So, �1 cycles come from hyperplanes in P5� that are tangent to G.1; 3/,
that means, the dual variety of G.1; 3/; this has degree 2, so the pencil of hyperplanes
containing the general twisted cubic will intersect it twice; in sum, the twisted cubic is
contained in two Schubert cycles †1.L/ and †1.M/ (with L and M skew because of
the generality of C .

Exercise 1.88. ?? Show that for skew lines L and M � P3, the intersection †1.L/ \
†1.M/ is isomorphic to L �M via the map sending a point Œƒ� 2 †1.L/ \†1.M/ to
the pair .ƒ \ L;ƒ \M/ 2 L �M , and that it is the intersection of G.1; 3/ with the
intersection of the hyperplanes spanned by †1.L/ and †1.M/.

Solution to Exercise ??: As seen in the previous exercise, †1.L/ is a cone over a
smooth quadric surface; now, every hyperplane section of it that does not contain the
vertex ŒL� will give rise to a smooth quadric surface; but now, intersecting with †1.M/

means considering an hyperplane section, and the fact that L and M are skew means
that L … †1.M/, so that †1.L/ \†1.M/ is indeed isomorphic to P1 � P1; it is very
to show that the map to L �M realizes this isomorphism, because it is bijective and has
a bijective inverse.

Exercise 1.89. ?? Finally, suppose that C � †1.L/ \†1.M/ is a twisted cubic curve.
Using the fact that its bidegree in†1.L/\†1.M/ Š L�M Š P1�P1 (possibly after
switching factors) is .2; 1/, show that for some degree 2 map ' W L!M , the family of
lines corresponding to C may be realized as the locus

C D fp; '.p/ j p 2 Lg:

Show correspondingly that the surface

X D
[
ŒL�2C

L � P3
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swept out by the lines of C is a cubic surface double along a line, and that it’s the
projection of a rational normal surface scroll X1;2 � P4.

Solution to Exercise ??: Given the fact that C has bidegree (2,1) on L�M , projecting
C onto L is going to give an isomorphism. So, C inside L �M is going to be the graph
of a regular degree morphism ' W L!M , of degree 2. So, the first part of the statement
is true, we have

C D fp; '.p/ j p 2 Lg:

Consider now, in P4, a rational normal surface scrollX1;2; remember that this arises from
the choice of a line E and a conic D in general position, an isomorphism  W E ! D,
and considering the union of the lines joining two identified points. Let us now pick
isomorphisms 'E W E ! L and 'D W D ! L, in such a way the composition
'�1D ı  ı 'E is the identity on L. Let’s consider then the rational map from P4 to
P3 such sending E on L by 'E , and sending D on M by ' ı 'D; this last condition
is equivalent as sending the plane containing D into M , in such a way the induced
morphism L ! M is indeed the degree 2 cover '. It is easy to prove (for instance,
using coordinates) that this induces a unique linear rational map from P4 to P3, defined
everywhere except for a point p in the plane of D (this rational map can be seen as well
as a projection from p), and that the image of X12 is exactly the surface X swept out by
C . This proves again that this is a degree 3 surface, and that is double along M because
every point ofM is image of two points of X12; then, p is not in any other tangent space
to X12, so that the only singularity of X is M .

.x0x3 � x1x2/
2
� 4.x0x2 � x

2
1/.x1x3 � x

2
2/:

In Section ?? we calculated the number of lines meeting four general n-planes in
P2nC1. In the following two exercises, we’ll see another way to do this (analogous to
the alternative count of lines meeting four lines in P3 given in Exercise ??), and a nice
geometric sidelight.

Exercise 1.90. ?? Let ƒ1; : : : ; ƒ4 Š Pn � P2nC1 be four general n-planes. Calculate
the number of lines meeting all four by showing that the union of the lines meeting
ƒ1; ƒ2 and ƒ3 is a Segre variety S1;n D P1 � Pn � P2nC1 and using the calculation
of Section ?? for the degree of S1;n.

Solution to Exercise ??: Let X be the union of all these lines; let us first show that
X is the disjoint union of all the lines in S D \3iD1†n.ƒi /, that are parametrized by
ƒ1 Š Pn; in fact, consider a point p 2 ƒ1: projecting away from it, the images of ƒ2
and ƒ3 will intersect in one single point: this means that there is only one line L in S
passing through p; it is easy to show then that this lines are all disjoint. This provides
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also a map X ! Pn, whose fibers are isomorphic to P1. This map has three independent
sections, corresponding to the embeddings ƒi � Pn: this can only mean that X is the
trivial P1 fibration on Pn, that means just the product P1 � Pn. To prove that this is
indeed embedded in P2nC1 as the Segre embeddings, we need to prove that all fibers Pn

are embedded as projective subspaces of P2nC1. This might be a little complicated to
prove directly, so we will do it using coordinates: using the fact that the projective linear
group PGL2nC2 acts transitively on general triples on n-planes .ƒ1; ƒ2; ƒ3/, we just
need to prove it for one specific situation. Using the three planes

ƒ1 D .x0; x1; : : : ; xn/

ƒ2 D .xnC1; xnC2; : : : ; x2nC1/

ƒ3 D .x0 � xnC1; : : : ; xn � x2nC1/

it is easy to see that the Segre variety is the locus where the matrix 
x0 x1 : : : xn

xnC1 xnC2 : : : x2nC1

!
has rank 1 (meaning the vanishing locus of all 2� 2 determinants), that is a Segre variety
S1;n.

Exercise 1.91. ?? By the preceding exercise, we can associate to a general configuration
ƒ1; : : : ; ƒ4 of k-planes in P2kC1 an unordered set of k C 1 cross-ratios. Show that
two such configurations fƒig and fƒ0ig are projectively equivalent if and only if the
corresponding sets of cross-ratios coincide.

Solution to Exercise ??: Remember that the action of PGL2nC2 on general triples
.ƒ1; ƒ2; ƒ3/ of n-planes transitive; furthermore, the stabilizer of a general triple is
isomorphic to PGLnC1; in fact, this stabilizer would keep fixed the Segre variety S1;n
of the previous exercise, whose stabilizer is PGL2 � PGLnC1; but, in this P1 � Pn

the three Pn fibers corresponding to ƒ1; ƒ2; ƒ3 have to remain fixed, so that in the
product PGL2 � PGLnC1 the first coordinate has to be the identity. Note that this
proves that the set of linear automorphism sending a general triple .ƒ1; ƒ2; ƒ3/ into
another general triple .ƒ01; ƒ

0
2; ƒ

0
3/ is isomorphic to PGLnC1 as well. Now, for an

element of PGLnC1 to keep fixed also a fourth general plane ƒ4, it is necessary and
sufficient to fix the nC 1 points of intersection of ƒ4 with S1;n; we can represent these
points in P1 � Pn as f.�i ; pi /gnC1iD1 and consider which nC 1-tuples are conjugate by
the action of PGLnC1; but now PGLnC1 acts trivially on the first coordinates �i and
it acts transitively on (general) nC 1-tuples of points in Pn. Collecting everything, we
proved that two general 4-tuples of n-planes are projectively equivalent if and only if the
set fpignC1iD1 of nC 1 points in P1 is the same; these points can be seen as cross ratios of
the points of intersection with the 4 planes of the nC 1 lines meeting them.
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The next two exercises deal with the example of dynamic specialization given in
Section ??, and specifically with the family ˆ of cycles described there.

Exercise 1.92. ?? Show that the support of ˆ0 is all of †2;2.P / [†3;1.p0;H0/.

Solution to Exercise ??: In Section ??, we proved that the support of ˆ0 is contained
in †2;2.P / [ †3;1.p0;H0/. Let now N be a general line in †2;2.P /, that means, a
line contained in P ; this line meets L in a point q, and M0 in a point q0; the point q0
is a limit of points qt 2 Mt , so considering the lines Nt D qqt we obtain a family of
lines whose limit is N . Let now N 0 be a general line in †3;1.p0;H0/, that means a
line contained in the hyperplane H0 and through the point p0; consider now the plane
K D LN 0, and a point q0 in N 0 different from p0; consider now any family of points q0t
having as limit q0 such that q0t 2 Ht , and consider the family of planes Kt D Lq0t . Now,
every line Mt meets the plane Kt in a point rt , because both Mt and Kt lie in the same
three space Ht ; note that we have r0 D p0. Now, we just need to consider the family of
lines N 0t D q

0
trt ; they have N 0 as limit, and N 0t meets Mt in rt , and meets L because it

lies in the plane Kt ; N 0 is then in the limit.

Exercise 1.93. ?? Verify the last assertion made in the calculation of �22 ; that is, show
that ˆ0 has multiplicity 1 along each component. [Hint: argue that by applying a family
of automorphisms of P4 we can assume that the plane Ht is constant and use the
calculation of the preceding chapter.]

Solution to Exercise ??: As in the calculations for the previous chapter, this comes
from the fact that general lines in †2;2.P / and †3;1.p0;H0/ are limit of a single line
in neighbor fibers ˆt .

Exercise 1.94. ?? A further wrinkle in the technique of dynamic specialization is
that to carry out the calculation of an intersection of Schubert cycles we may have to
specialize in stages. To see an example of this, use dynamic specialization to calculate
the intersection �22 in the Grassmannian G.1; 5/. [Hint: you have to let the two 2-planes
specialize first the a pair intersecting in a point, then to a pair intersecting in a line.]

Solution to Exercise ??: Let’s consider two planes P;Q; if we have Q directly degen-
erating to a plane Q0 meeting P along a line L, we would have †2.P / \ †2.Q0/
containing a component with dimension too high, that is †3.L/. As suggested, let us
now perform the specialization in two steps; the first has the plane Q degenerating to
a plane Q0 meeting P in a point p; then, the intersection of the two cycles splits in
two irreducible components, one of which is †4.p/ and the other one ‰ whose general
point is a line meeting P and Q0 at two different points (thus contained in the 4-plane
PQ0); in the same fashion as in the previous exercise, it is possible to prove that both
components appear with multeplicity one. The second step of the specialization will be
moving Q0 in a plane Q00 meeting P along a line L. The component ‰ will then break
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in the components †3;1.L; PQ0/ and †2;2.PQ00/, that again can be show they appear
with multiplicity 1 each; we then found

�22 D �4 C �3;1 C �2;2:

Exercise 1.95. ?? Suppose that the Schubert class �a D2 A.G.k; n// corresponds to
the Young diagram Y in a k � .n � k/ box B . Show that under the duality G.k; n/ Š
G.n � k; n/, the class �a is taken to the Schubert class �b corresponding to the Young
diagram Z that is the transpose of Y , that is, the diagram obtained by flipping Y around
a 45ı line running northwest-southeast. For example if

�3;2;1;1 2 A.G.4; 7//  !

then the corresponding Schubert cycle in G.3; 7/ is

�4;2;1 2 A.G.3; 7//  !

Solution to Exercise ??: The solution of this exercise is left to the reader.

Exercise 1.96. ?? Let i W G.k; n/ ! G.k C 1; n C 1/ and j W G.k; n/ ! G.k; n C

1/ be the inclusions obtained by sending ƒ � Kn to ƒ and to the span of ƒ and
enC1 respectively. Show that the map i� W Ad .G.k C 1; nC 1// ! Ad .G.k; n// is a
monomorphism if and only if n�k � d , and that j � W Ad .G.k; nC1//! Ad .G.k; n//

is a monomorphism if and only if k � d . (Thus, for example, the formula

�21 D �2 C �11;

which we established in A.G.1; 3//, holds true in every Grassmannian.)

Solution to Exercise ??: Consider a Schubert variety †a.V/ for a general flag V in
G.k; nC 1/; its preimage in G.k; n// by j correspond to

†a.V/ \†1;:::;1.Kn/:

As Schubert cycle in G.k; n//, this correspond to

†a.V \Kn/

where V \Kn is the flag obtained intersecting all elements of V with the hyperplane
Kn. This gives rise to a cycle �a, unless one of the elements of V is a point so that the
intersection with Kn is empty, and thus the whole image. The condition can be stated as
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the Young diagram of the partition a to have no rows with n � k C 1 elements, that is
the same as for the partition a to make sense as Schubert class for G.k; n/. We thus have
j ��a D �a if a has no columns with n � k C 1 blocks, and i��a D 0 otherwise. So
j � W Ad .G; .k; nC 1//! Ad .G.k; n// is injective if and only if no partition of weight
a has a row with n � k C 1 elements, that means if d � n � k.

The same argument applies for i�; here the preimage of a Schubert variety †a.V/
in G.k C 1; nC 1/ is

†a.V/ \†n�k.enC1/

that can be seen inG.k; n/ as†a.VenC1\Kn/, where VenC1\Kn is the flag obtained
considering the spans of the elements and enC1, and intersecting with Kn; again it is
easy to see that if one of the elements of V is an hyperplane, i. e. if the partition has a
column with k C 1 elements; so, the condition on d is if there is no Young diagram with
d blocks having a column with k C 1 elements, meaning d � k.

Exercise 1.97. ?? Let C � Pr be a smooth, irreducible, nondegenerate curve of degree
d and genus g, and let S1.C / � G.1; r/ be the variety of chords to C , as defined in
Section ?? above. Find the class ŒS1.C /� 2 A2.G.1; r//.

Solution to Exercise ??: The variety S1.C / is 2 dimensional, so the cycle will be of
the kind

˛�r�1;r�3 C ˇ�r�2;r�2;

and ˛; ˇ are obtained intersecting with cycles (respectively) �2;0 and �1;1. For the
former, we ask how many chords to C meet a general Pn�3; projecting away from that
Pn�3, C is mapped in a plane curve of degree d , geometric genus g, and

�
d�1
2

�
� g

nodes, that correspond to chords to C in Pn. For the latter, we ask how many chords are
contained in a Pn�1; inside this there are d points of C , and so

�
d
2

�
chords. We get then

(in characteristic 0)

ŒS1.C /� D

  
d � 1

2

!
� g

!
�r�1;r�3 C

 
d

2

!
�r�2;r�2:

Exercise 1.98. ?? Let Q � Pn be a smooth quadric hypersurface, and let Tk.Q/ �
G.k; n/ be the locus of planes ƒ � Pn such that ƒ \Q is singular. Show that

ŒTk.Q/� D 2�1:

Solution to Exercise ??: To find this class we have to intersect with the cycle

ŒTk.Q/� � �n�k;n�k;:::;n�k;n�k�1

corresponding to lines in G.k; n/ parametrizing a pencil of k-planes contained in a
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k C 1-plane ƒnC1 and containing an n � 1-plane ƒn�1. The intersection Q \ƒnC1 is
a smooth quadric hypersurface Q0; the number of hyperplanes in a pencil with a singular
section, that is the same as being tangent to Q0, is the degree of the dual of Q0, that is 2;
this proves that

ŒTk.Q/� � �n�k;:::;n�k�1 D 2

that means ŒTk.Q/� D 2�1.

Exercise 1.99. ?? Find the expression of �22;1 as a linear combination of Schubert
classes in A.G.3; 6//. This is the smallest example of a product of two Schubert classes
where another Schubert class appears with multiplicity > 1.

Solution to Exercise ??: Note that by Pieri’s formulas, no coefficient bigger than 1 can
appear in the product of two Schubert cycles if one of them is of the kind �.1/a or �b;
the simplest case in which this does not happen is �22;1. Using Giambelli’s formula,
�2;1 D �2�1 � �3; we also have, by Pieri’s formula,

�2;1�2�1 D �3;3 C 3�3;2;1 C �2;2;2 and �2;1�3 D �3;2;1

so that

�22;1 D �3;3 C 2�3;2;1 C �2;2;2

so we get a coefficient bigger than one.

Exercise 1.100. ?? Using Pieri’s formula, determine all products of Schubert classes in
the Chow ring of the Grassmannian G.2; 5/.

Solution to Exercise ??: The proof of this exercise is left to the reader.

Exercise 1.101. ?? Let Q, Q0 and Q00 be three general quadrics in P8. How many
2-planes lie on all three? (Try first to do this without the tools introduced in Section ??.)

Solution to Exercise ??: By the calculations in section ??, we need to find the intersec-
tion .8�3;2;1/3 (and invoke Kleiman’s theorem); let us now focus our attention to find the
triple product �33;2;1. Without invoking Pieri’s and Giambelli’s formula, we can do a first
step that simplifies the problem very much. One of the conditions for a planeƒ to be in a
�3;2;1 cycle is to be contained in an hyperplane H ; all planes in the intersection of three
general �3;2;1 cycles will then be contained in the intersection of three hyperplanes, that
means, a P5; we can then translate the question to one about planes in P5; in G.2; 5/,
the condition �3;2;1 becomes a �2;1, so all boils down to the intersection number �32;1 in
G.2; 5/. Now we can use the previous exercises to get

�22;1 � �2;1 D .�3;3 C 2�3;2;1 C �2;2;2/ � �2;1 D 2�3;3;3

so the degree is 2. Going back to our original problem, we have deg.8�3;2;1/3 D 83 �2 D
1024.
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Exercise 1.102. ?? Use Pieri to identify the degree of �k.n�k/1 with the number of
standard tableaux: that is, ways of filling in k � .n � k/ matrix with the integers
1; : : : ; k.n� k/ in such a way that every row and column is strictly increasing. Then use
the “hook formula” (see for example, ?]) to show that this number is

�
k.n � k/

�
Š

k�1Y
iD0

i Š

.n � k C i/Š
;

Solution to Exercise ??: Using Pieri’s formula k.n � k/ times, the degree is equal to
the number of ways the k � .n � k/ rectangle can be “assembled” using single boxes;
remembering the order in which they are assembled, they give rise to Young tableaux;
remember that given a cell, its hook is the set of the cells directly on its right or on its
left. The hook formula says that the number of Young tableaux of a partition � is j�jŠ
divided by the product of the sizes of all hooks. For the element in the i th row and in
the j th column, its hook is composed by nC 1 � i � j elements; taking the product in
the i th row, we get .n� k C i � 1/Š=.i � 1/Š; collecting it all together, and shifting i by
one, we get the formula above.

Exercise 1.103. ?? Deduce Giambelli’s formula in the 3 � 3 case—that is, the relationˇ̌̌̌
ˇ̌ �a �aC1 �aC2

�b�1 �b �bC1
�c�2 �c�1 �c

ˇ̌̌̌
ˇ̌ D �a;b;c

for any a � b � c—by assuming Giambelli in the 2�2 case, expanding the determinant
by cofactors along the last column and applying Pieri.

Solution to Exercise ??: Expanding along the last column and applying Giambelli, we
get

�aC2�b�1;c�1 � �bC1�a;c�1 C �c�a;b:

Using Pieri, we get

�aC2�b�1;c�1 D
X
I1

�i;j;k

I1 D f.i; j; k/ j iC j Ck D aCbC c; 0 � k � c�1 � j � b�1 � i � aCbC1g

�bC1�a;c�1 D
X
I2

�i;j;k

I2 D f.i; j; k/ j i C j C k D aC b C c; 0 � k � c � 1 � j � a � i � aC b C 1g

�c�a;b D
X
I3

�i;j;k
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I3 D f.i; j; k/ j i C j C k D aC b C c; 0 � k � b � j � a � i � aC bg

and now it is just a combinatorial exercise to show that

I1 [ I3 D I2 [ f.a; b; c/g:

1.5 Chapter 5
Many of the following exercises give applications of the Whitney formula and

splitting principle. We will be assuming the basic facts that if

E D
eM
iD1

Li and F D
fM
iD1

Mi

are direct sums of line bundles, then

Symk E D
M

1�11�����ik�r

Li1 ˝ : : : � � � ˝ Lik I

^
kE D

M
1�11<���<ik�r

Li1 ˝ : : : � � � ˝ Lik I and

E ˝ F D
e;fM

i;jD1;1

Li ˝Mj :

Exercise 1.104. ?? Let E be a vector bundle of rank 3. Express the Chern classes of
^2E in terms of those of E by invoking the splitting principle and the Whitney formula.

Solution to Exercise ??: Suppose E splits as sum of three line bundles L1;L2;L3 with
first Chern classes ˛1; ˛2; ˛3; from the Whitney formula, we have. Then we have

^
2E D .L1 ˝ L2/˚ .L1 ˝ L3/˚ .L2 ˝ L3/

so that from the Whitney’s formula we have

c.^2E/ D .1C ˛1 C ˛2/.1C ˛1 C ˛3/.1C ˛2 C ˛3/ D
D 1C 2.˛1 C ˛2 C ˛3/C .˛

2
1 C ˛

2
2 C ˛

2
3 C 3˛1˛2 C 3˛1˛3 C 3˛2˛3/C

C .˛21˛2 C ˛
2
1˛3 C ˛1˛

2
2 C ˛

2
2˛3 C ˛1˛

2
3 C ˛2˛

2
3 C 2˛1˛2˛3/ D

D 1C 2.˛1 C ˛2 C ˛3/C ..˛1 C ˛2 C ˛3/
2
C ˛1˛2 C ˛1˛3 C ˛2˛3/C

C ..˛1 C ˛2 C ˛3/.˛1˛2 C ˛1˛3 C ˛2˛3/ � ˛1˛2˛3/
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that can be rewritten using Chern classes of E as

c.^2E/ D 1C 2c1.E/C c1.E/2 C c2.E/C c1.E/c2.E/ � c3.E/:

By the splitting principle, this formula holds in general for every rank 3 vector bundle,
and collecting by degree we get all Chern classes of c.^2E/.

Exercise 1.105. ?? Verify your answer to the preceding exercise by observing that
wedge product map

E ˝^2E ! ^3E D det.E/

yields an identification ^2E D E�˝ det.E/, and applying the formula for tensor product
with a line bundle.

Solution to Exercise ??: Let us denote by c1; c2; c3 the Chern classes of E . Using the
formula for the tensor product with a line bundle, we have

c.E� ˝ det.E// D
X
l

cl.E�/.1C c1.det.E///3�l D

D .1C c1/
3
� c1.1C c1/

2
C c2.1C c1/ � c3

D 1C 2c1 C c
2
1 C c2 C c1c2 � c3;

that is the same as the one of ^2E ; to prove that they are identified by the wedge product
map, we need to prove that ^2E ! E� ˝ det.E/ is an isomorphism; but by very simple
linear algebra, this in an isomorphism on every fiber, so that it is globally.

Exercise 1.106. ?? Let E be a vector bundle of rank 4. Express the Chern classes of
^2E in terms of those of E .

Solution to Exercise ??: Following the solution to Exercise ??, we split E in 4 line
bundles with first Chern class ˛i ; using the following identities of symmetric functionsP

˛3i C 7
P
˛2i ˛j C 8

P
˛i˛j˛k D .

P
˛i /

3 C 4.
P
˛i /.

P
˛i˛j /

2
P
˛3i ˛j C 5

P
˛2i ˛

2
j C 12

P
˛2i ˛j˛k C 42

Q
˛i D

D 2.
P
˛i /

2.
P
˛i˛j /C .

P
˛i˛j /

2 C 12
Q
˛iP

˛3i ˛
2
j C 3

P
˛3i ˛j˛k C 7

P
˛2i ˛

2
j˛k C 15.

Q
˛i /.

P
˛i / D

D .
P
˛i /.

P
˛i˛j /

2 C .
P
˛i /

2.
P
˛i˛j˛k/ � 4.

P
˛i /.

Q
˛i /P

˛3i ˛
2
j˛k C 2

P
˛2i ˛

2
j˛
2
k
C 2.

Q
˛i /.

P
˛2i /C 4.

Q
˛i /.

P
˛i˛j / D

D .
P
˛i /.

P
˛i˛j /.

P
˛i˛j˛k/ � .

P
˛i /

2.
Q
˛i / � .

P
˛i˛j˛k/

2

we find that
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c1.^
2E/ D 3c1

c2.^
2E/ D 3c21 C 2c2

c3.^
2E/ D c31 C 4c1c2

c4.^
2E/ D 2c1c2 C c22 C 12c4

c5.^
2E/ D c1c22 C c21c3 � 4c1c4

c6.^
2E/ D c1c2c3 � c21c4 � c23 .

Exercise 1.107. ?? Let E be a vector bundle of rank 3. Express the Chern classes of
Sym2 E in terms of those of E .

Solution to Exercise ??: In the same way as in the previous exercises, we split E in
line bundles with first Chern class ˛1; ˛2; ˛3, and we get

c.Sym2 E/ D .1C 2˛1/.1C 2˛2/.1C 2˛3/.1C˛1C˛2/.1C˛1C˛3/.1C˛2C˛3/:

Collecting the first and the last three factors, and using Exercise ??, we get

c.Sym2 E/ D .1C 2c1 C 4c2 C 8c3/.1C 2c1 C c21 C c2 C c1c2 � c3/

and expanding the product we get

c1.Sym2 E/ D 4c1
c2.Sym2 E/ D 5c21 C 5c2

c3.Sym2 E/ D 2c31 C 11c1c2 C 7c3
c4.Sym2 E/ D 6c21c2 C 14c1c3 C 4c22
c5.Sym2 E/ D 8c21c3 C 4c1c22 C 4c2c3

c6.Sym2 E/ D 8c1c2c3 � 8c23 .

Exercise 1.108. ?? Let E be a vector bundle of rank 2. Express the Chern classes of
Sym3 E in terms of those of E .

Solution to Exercise ??: Splitting E into line bundles with first Chern classes ˛1 and
˛2, we get

c.Sym3 E/ D .1C 3˛1/.1C 3˛2/.1C 2˛1 C ˛2/.1C ˛1 C 2˛2/

colleting the two first and the last two factors, we get

c.Sym3 E/ D .1C 3c1 C 9c2/.1C c1 C ˛1/.1C c1 C ˛2/ D
D .1C 3c1 C 9c2/.1C 3c1 C 2c

2
1 C c2/ D

D 1C 6c1 C .11c
2
1 C 10c2/C .6c

3
1 C 30c1c2/C .18c

2
1c2 C 9c

2
2/

we get all Chern classes of Sym3 E .
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Exercise 1.109. ?? Let E and F be vector bundles of rank 2. Express the Chern classes
of the tensor product E ˝ F in terms of those of E and F .

Solution to Exercise ??: Let us split E and F in line bundles with first Chern classes
respectively ˛1; ˛2 and ˇ1; ˇ2. Let us call denote by (respectively) c1; c2 and d1; d2 the
Chern classes of E and F . We then have

c.E ˝ F/ D .1C ˛1 C ˇ1/.1C ˛1 C ˇ2/.1C ˛2 C ˇ1/.1C ˛2 C ˇ2/

and multiplying out we get

c1.E ˝ F/ D 2c1 C 2d1
c2.E ˝ F/ D c21 C 2c2 C d21 C 2d2 C 3c1d1

c3.E ˝ F/ D 2c1c2 C 2d1d2 C c21d1 C c1d21 C 2c1d2 C 2c2d1
c4.E ˝ F/ D c22 C d22 C c1c2d1 C c1d1d2 C c21d2 C c2d21 � 2c2d2.

Exercise 1.110. ?? Just to get a sense of how rapidly this gets complicated: do the
preceding exercise for a pair of vector bundles E and F of ranks 2 and 3.

Solution to Exercise ??: Let us use a slightly different idea: let us split only E in two
line bundles L1 and L2 with first Chern classes ˛1 and ˛2; we have now that the tensor
product is the direct sum of L1 ˝ F and L2 ˝ F , and we can use the formulas for the
tensor product with a line bundle and then Whitney’s formula. So, we have

c.L1 ˝ F/ D
X
l

dl.1C ˛i /
3�l
D

D .1C ˛i /
3
C d1.1C ˛i /

2
C d2.1C ˛i /C d3

and after some manipulations, we get

c.E ˝ F/ D .1C c1 C c2/3 C d1.1C c1 C c2/2.2C c1/C
C d2.1C c1 C c2/.2C 2c1 C c

2
1 � 2c2/C

C d3.2C 3c1 C 3c
2
1 � 6c2 C c

3
1 � 3c1c2/C

C d21 .1C c1 C c2/
2
C d1d2.1C c1 C c2/.2C c1/C

C d1d3.2C 2c1 C c
2
1 � 2c2/C d

2
2 .1C c1 C c2/C d2d3.2C c1/C d

2
3

that we will not simplify any further.

Exercise 1.111. ?? Apply the preceding exercise to find all the Chern classes of the
tangent bundle TG of the Grassmannian G D G.2; 4/

Solution to Exercise ??: We have TG D S� ˝Q, and we know the Chern classes of
S� and Q, that are
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c.S�/ D 1C �1 C �1;1
c.Q/ D 1C �1 C �2

and now we can use Exercise ?? to find

c1.TG/ D 4�1
c2.TG/ D 7�2 C 7�1;1
c3.TG/ D 12�2;1
c4.TG/ D 6�2;2

that we can verify with Proposition ?? (about c1) and Theorem ?? (about c4).

Exercise 1.112. ?? Find all the Chern classes of the tangent bundle TQ of a quadric
hypersurface Q � P5. Check that your answer agrees with your answer to the last
exercise!

Solution to Exercise ??: We can use the formula in Section ?? that gives us

c.TQ/ D
.1C �Q/

6

.1C 2�Q/
D .1C �Q/

6.1 � 2�Q C 4�
2
Q � 8�

3
Q C 16�

4
Q/ D

D 1C 4�Q C 7�
2
Q C 6�

3
Q C 3�

4
Q

and the result is exactly the same as the previous exercise we realize that �Q D �1

because they both are then hyperplane section under the Plücker embedding.

Exercise 1.113. ?? Calculate the Chern classes of the tangent bundle to a product
Pn � Pm of projective spaces

Solution to Exercise ??: It is immediate to see that the tangent bundle of Pn � Pm

splits as direct sum of the two tangent bundles TPn and TPm ; then, following the notation
of Theorem ??, Whitney’s formula gives us

TPn˝Pm D .1C ˛/nC1.1C ˇ/mC1 D

D 1C .nC 1/˛ C .mC 1/ˇ C

 
nC 1

2

!
˛2 C .nC 1/.mC 1/˛ˇ C : : : :

Exercise 1.114. ?? Find the Euler characteristic of a smooth hypersurface of bidegree
.a; b/ in Pm � Pn.
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Solution to Exercise ??: Let us use Theorem ?? on the hypersurface X ; we have

c.TX / D
c.TPn˝Pm/

.1C a˛ C bˇ/
D

D

0@X
i;j

 
nC 1

i

! 
mC 1

j

!
˛iˇj

1A0@X
k;h

.�1/kCh

 
k C h

k

!
akbh˛kˇh

1A
and the degree of the top Chern class is just the coefficient in this sum of ˛nˇm, so is
obtained as

�top.X/ D
X
k;h

 
nC 1

k C 1

! 
mC 1

hC 1

!
� .�1/kCh

 
k C h

k

!
akbh

that we can check for instance for n D m D 1, where we get �top.X/ D �2a�2bC2ab,
that agrees with the formula g D .a � 1/.b � 1/ of the genus of an .a; b/ curve on
P1 � P1, and the fact that the Euler characteristic of a genus g curve is � D 2� 2g.

Exercise 1.115. ?? Using the Whitney formula, show that for n � 2 the tangent bundle
TPn of projective space is not a direct sum of line bundles.

Solution to Exercise ??: If TPn splitted as sum of line bundles, then the polynomial
p.x/ D .1C x/nC1 � xnC1 would split in linear terms of the kind .1C ax/ where a
is an integer; in particular, p.x/ would only have rational roots. But over the complex
numbers, p.x/ splits as

p.x/ D

nY
iD1

.1C x � �ix/

where �nC1 is a primitive .nC 1/th root of 1; so, unless nC 1 D 2 (so that TP1 is of
course a line bundle), p.x/ has complex roots, hence it cannot split in linear factors with
rational coefficients. Using the knowledge on the global sections of TPn (coming from
the Euler sequence) it is possible to prove that more in general TPn is not a direct sum of
subbundles of any positive rank.

Exercise 1.116. ?? Find the Betti numbers of the smooth intersection of a quadric and a
cubic hypersurface in P4, and of the intersection of three quadrics in P5. (Both of these
are examples of K3 surfaces, which are diffeomorphic to a smooth quartic surface in
P3.)

Solution to Exercise ??: For what we have seen in Section ??, we only need to find the
middle Betti number, in this case h2 because we are dealing with surfaces. In the first
case, using Whitney’s formula, we get

c.TS / D
.1C �/5

.1C 2�/.1C 3�/
D .1C 5� C 10�2/.1 � 5� C 19�2/ D 1C 4�2
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so �top.S/ D deg.4�2/ D 24 because S is a surface of degree 6. So, we need to have
h2 D 22, so that we have

h0 D 1 h1 D 0 h2 D 22 h3 D 0 h4 D 1:

For the latter, again Whitney’s formula gives us

c.TS / D
.1C �/6

.1C 2�/3
D .1C 6� C 15�2/.1 � 6� C 24�2/ D 1C 3�2

and again we find �top.S/ D deg.3�2/ D 24 because the surface is degree 8. Hence,
the Betti numbers are the same as before.

Exercise 1.117. ?? Find the Betti numbers of the smooth intersection of two quadrics
in P5. This is the famous quadric line complex, about which you can read more in [GH],
Chapter 6.

Solution to Exercise ??: As in the previous exercise, we can find

c.TX / D
.1C �/6

.1C 2�/2
D .1C 6� C 15�2 C 20�3/.1 � 4� C 12�2 � 32�3/ D

D 1C 2� C 3�2 C 0 � �3

so that �top.X/ D 0; from Lefschetz hyperplane theorem **ref** for complete inter-
sections, we know that h0 D h2 D h4 D h6 D 1 and that h1 D h5 D 0; this gives us
h3 D 4.

Exercise 1.118. ?? Show that the cohomology groups of a smooth quadric threefold
Q � P4 are isomorphic to those of P3 (Z in even dimensions, 0 in odd), but its
cohomology ring is different (the square of the generator of H 2.Q;Z/ is twice the
generator ofH 4.Q;Z/). (This is a useful example of the fact that two compact, oriented
manifolds can have the same cohomology groups but different cohomology rings, if
you’re ever teaching a course in algebraic topology.)

Solution to Exercise ??: From Table ?? and Lefschetz theorem again, we have that
Betti numbers of Q are the same of those of P3. Consider now the generator of
H 2.Q;Z/; from Lefschetz theorem again, this comes from the generator of H 2.P4;Z/,
so it is the hyperplane section; hence, is also the generator of A1.Q/. Considering its
self intersection, we get a curve of degree 2 in P4, that is a conic plane curve; this will
also be the square of the cohomology class, because when intersection is transverse cup
product is the same as intersection product. But now, Q also contains lines (from an
incidence correspondence, it is easy to see that contains a 3 dimensional family of them),
and the class of one of these lines has to be the generator of A2.Q/; it is a generator
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of H 2.Q;Z/ D Z too, because it is indivisible (this can be seen from the fact that the
intersection with the hyperplane section class is 1); now, the class of the conic above
is clearly twice this generator, so we proved the claim; in particular, the Chow (and
cohomology) rings of Q and P3 are isomorphic as additive groups, but not as rings.

Exercise 1.119. ?? Let S � P4 be a smooth complete intersection of hypersurfaces of
degrees d and e, and let Y � P4 be any hypersurface of degree f containing S . Show
that if f is not equal to either d or e, then Y is necessarily singular.

(Hint: Assume Y is smooth, and apply the Whitney formula to the sequence

0! NS=Y ! NS=P4 ! NY=P4 jS ! 0

to arrive at a contradiction.)

Solution to Exercise ??: If Y is smooth, then NS=Y is a line bundle on S . Consider
the exact sequence in the hint; remember that NY=P4 jS Š OP4.f /jS and NS=P4 Š

OP4.d/jS ˚OP4.e/jS . Using Whitney’s formula, we can find out the Chern classes of
NS=Y , that means,

c.NS=Y / D
.1C d�/.1C e�/

1C f �
D 1C .d C e � f /� C .d � f /.e � f /�2:

In order for it to be the total Chern class of a line bundle, we need the second Chern
class to be 0, that means, f D d or f D e. Otherwise, Y is singular; note that this also
prove that Y is singular along S , and the quantity .d � f /.e � f / gives quantitative
information about the singularities of Y (through the analysis of the torsion of the normal
sheaf NS=Y ).

1.6 Chapter 6
Exercise 1.120. ?? Let PN be the space of all surfaces of degree d in P3. Show that the
set of surfaces of degree d containing two or more lines is a subvariety of codimension
2d � 6 in PN . (Thus a general surface X � P3 of degree d � 4 containing a line
contains only one line, and no surface in a general pencil of surfaces of degree d will
contain more than one line.)

Solution to Exercise ??: Consider the incidence correspondence in PN � G.1; 3/ �
G.1; 3/ given by

ˆ D f.X;L;M/ j L [M � Xg;

and suppose we know that it has dimensionN �2d C6; then, to show that the image via
the projection onto X has the same dimension, we need to show that is generically finite,
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so it is sufficient to show that it exists a degree d surface containing finitely many lines.
For instance, we can consider the Fermat surface with equation xd0 Cx

d
1 Cx

d
2 Cx

d
3 D 0,

that indeed contains only finitely many lines (the check of this fact is left to the reader).
So, we need to look at the dimension of the whole incidence correspondenceˆ; let us now
consider the fibers of the projection onto G.1; 3/ �G.1; 3/; that means, understanding
the dimension of degree d polynomials vanishing on two given lines .L;M/. This is the
same as finding the dimension of the kernel of

rL;M W H
0.P3;OP3.d//! H 0.L;OL.d// �H 0.M;Om.d//:

Now, if rL;M is surjective, then the kernel has dimensionNC1�2.dC1/ D N�2d�1,
so taking the projectivization we would get N � 2d � 2-dimensional fiber over .L;M/.
Now, consider the case in which L and M are skew lines (the general case), and let’s see
that rL;M is surjective; we can then set coordinates in such a way x0; x1 are coordinates
on L and vanish on M , and viceversa for x2; x3: now, considering any two degree d
polynomials f .x0; x1/ and g.x2; x3/, they are in the image of the polynomial

f .x0; x1/C g.x2; x3/ 2 H
0.P3;OP3.d//

so that rL;M is surjective and the fiber over .L;M/ is N �2d �2-dimensional. If L;M
meet in one point p, a similar argument shows that rL;M has a one dimensional cokernel
(due to the fact that the two polynomials f and g have to be chosen to have the same
value at p), so that the fiber over .L;M/ isN �2d �1-dimensional (we do not consider
the case L D M , because in its fiber we would find all surfaces containing one line).
So, adding everything up, we get that ˆ is N � 2d C 6-dimensional, that completes the
proof.

Exercise 1.121. ?? Show that the expected number of lines on a hypersurface of degree
2n � 3 in Pn (that is, the degree of c2n�2.Sym2n�3 S�/ 2 A.G.1; n//) is always
positive, and deduce that every hypersurface of degree 2n � 3 in Pn must contain a line.
(This is just a special case of Corollary ??; the idea here is to do it without a tangent
space calculation.)

Solution to Exercise ??: Using the splitting principle, we have

c.S�/ D 1C �1 C �1;1 D .1C ˛/.1C ˇ/

so that we obtain

c.Sym2n�3 S�/ D .1C .2n � 3/˛/.1C .2n � 4/˛ C ˇ/ : : : .1C .2n � 3/ˇ/

and hence

c15.Sym2n�3 S�/ D .2n � 3/˛..2n � 4/˛ C ˇ/ : : : .2n � 3/ˇ

collecting terms two by two starting from the two extremal, we get, as i goes from 0 to
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n � 2,

..2n � 3 � i/˛ C iˇ/.i˛ C .2n � 3 � i/ˇ/

Di.2n � 3 � i/.˛2 C ˇ2/C .i2 C .2n � 3 � i/2/˛ˇ D

Di.2n � 3 � i/.�2 � �1;1/C .i
2
C .2n � 3 � i/2/�1;1 D

Di.2n � 3 � i/�2 C .i
2
� i.2n � 3 � i/C .2n � 3 � i/2/�1;1

that is, a positive linear combination of �2 and �1;1; the product of all such elements for
i going from 0 to n � 2 is then going to be a positive multiple of �n�1;n�1.

Exercise 1.122. ?? Let X � P4 be a general quartic threefold. By Theorem ??, X will
contain a one-parameter family of lines. Find the class in A.G.1; 4// of the Fano scheme
F1.X/, and the degree of the surface Y � P4 swept out by these lines.

Solution to Exercise ??: From Theorem ??, we have that F1.X/ is one dimensional
and reduced; so, its class will be exactly c5.Sym4 S�/. In order to find this, we split S�
in two (virtual) line bundles with Chern classes ˛ and ˇ, and we get

ŒF1.X/� D c5.Sym4 S�/ D 4˛.3˛ C ˇ/.2˛ C 2ˇ/.˛ C 3ˇ/4ˇ
D 32˛ˇ.˛ C ˇ/.3.˛ C ˇ/2 C 4˛ˇ/ D

D 32�1;1�1.3�
2
1 C 4�1;1/ D 320�3;2:

Using Exercise ??, the degree of the surface swept out is ŒF1.X/� � �1 D 320.

Exercise 1.123. ?? Find the class of the scheme F2.Q/ � G.2; 5/ of 2-planes on a
quadric Q � P5. (Do the problem first, then compare your answer to the result in
Proposition ??.)

Solution to Exercise ??: As in the previous exercises, we need to find the class c6.Sym2 S�/.
Splitting S� in three (virtual) line bundles with Chern classes ˛; ˇ and 
 , we get

c6.Sym2 S�/ D 2˛ � 2ˇ � 2
.˛ C ˇ/.˛ C 
/.ˇ C 
/ D
D 8�1;1;1.�1�1;1 � �1;1;1/ D 8�3;2;1

that in fact agrees with Proposition ??.

Exercise 1.124. ?? Find the expected number of 2-planes on a general quartic hypersur-
face X � P7, that is, the degree of c15.Sym4 S�/ 2 A.G.2; 7//.

Solution to Exercise ??: After a very long calculation (that we will not present here),
we get

c15.Sym4 S�/ D 3297280�5;5;5

so we get that the expected number of 2-planes on a general quartic sixfold 3297280.
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We will extend Theorem ?? to this case, and then prove that a general quartic sixfold
contains exactly that many 2-planes, in Exercises ??-??.

Exercise 1.125. ?? We can also use the calculation carried out in this chapter to count
lines on complete intersections X D Z1 \ � � � \ Zk � Pn, simply by finding the
classes of the schemes F1.Zi / of lines on the hypersurfaces Zi and multiplying them in
A.G.1; n//. Do this to find the number of lines on the intersection X D Y1 \ Y2 � P5

of two general cubic hypersurfaces in P5.

Solution to Exercise ??: To find the lines in a cubic fourfold, we split S� on G.1; 5/
using the virtual classes ˛ and ˇ; we then need to find

c4.Sym3 S�/ D 3˛.2˛ C ˇ/.˛ C 2ˇ/3ˇ D 9˛ˇ.2.˛ C ˇ/2 C ˛ˇ/ D
D 9�1;1.2�

2
1 C �1;1/ D 18�3;1 C 27�2;2:

So its square in A�.G.1; 5// is .182 C 272/�4;4 D 1053�4;4, so the degree is 1053. An
argument such as in Theorem ?? will also prove that for a general complete intersection
of this kind the Fano scheme is reduced, so X contains exactly 1053 lines.

Exercise 1.126. ?? Find the Chern class c3.Sym3 S�/ 2 A3.G.1; 3//. Why is this the
degree of the curve of lines on the cubic surfaces in a pencil? Note that this computation
does not use the incidence correspondence ˆ.

Solution to Exercise ??: To find this class, splitting S� again using the virtual classes
˛ and ˇ, we get

c.Sym3 S�/ D .1C 3˛/.1C 2˛ C ˇ/.1C ˛ C 2ˇ/.1C 3ˇ/ D
D 1C 6.˛ C ˇ/C 11.˛ C ˇ/2 C 10˛ˇ C 6.˛ C ˇ/3C

C 30˛ˇ.˛ C ˇ/C 9˛ˇ.2.˛ C ˇ/2 C ˛ˇ D

D 1C 6�1 C 11�2 C 21�1;1 C 42�2;1 C 27�2;2:

So, we get c3.Sym3 S�/ D 42�2;1 that means, a curve of degree 42. For the second part
of the exercise, let us remember Theorem ??: for a rank 4 vector bundle, as c3.Sym3 S�/
is, the class c3 is the locus �0; �1 where two sections become dependent; that means,
where a linear combination of �0 and �1 vanishes; but now, if �0 and �1 come from
two cubic polynomials f and g, the linear combinations will be all cubics is the pencil
generated by f and g; so, c3 is exactly the class of lines belonging to cubics in a
pencil.

Exercise 1.127. ?? Let fXt � P3gt2P2 be a general net of cubic surfaces in P3.

(a) Let p 2 P3 be a general point. How many lines lying on some member Xt of the
net pass through p?
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(b) Let H � P3 be a general plane. How many lines lying on some member Xt of the
net lie in H?

Compare your answer to the second half of this question to the calculation in Chapter ??
of the degree of the locus of reducible plane cubics!

Solution to Exercise ??: In the same fashion as in the previous exercise, the set of lines
lying in one of the cubics of the net is c2.Sym3 S�/ D 11�2 C 21�1;1. Asking how
many lines of this locus pass through a point p is the same as finding its intersection
with a general†2.p/: the answer is then c2.Sym3 S�/ ��2 D 11�2;2 so the answer is 11.
For the second part, we need to intersect with †1;1.H/, so that we get 21. For the last
observation, let us put ourselves in the point of view of the plane: restricting the net to
H , we get a net of plane degree 3 curves, and we are asking how many of them contain
a line, that means, are reducible. But as we found out in Section ??, this is locus has
codimension two and degree 21, so 21 will be the points of intersection with a general
net of cubics.

Exercise 1.128. ?? Let X � P3 be a surface of degree d � 3. Show that if F1.X/ is
positive-dimensional, then either X is a cone or X has a positive-dimensional singular
locus.

Solution to Exercise ??: As we have seen in Proposition ??, the only possibility for
F1.X/ to be 2-dimensional is if X is a plane; so, let us concentrate on the case of F1.X/
being a curve in G.1; 3/. Let now L � X be a line; if X was smooth along L, we would
have

TLF1.X/ D H
0.NL=X / D H 0.OL.2 � d// D 0

bu this is impossible because TLF1.X/ is (at least) one dimensional in this case; this
proves that every L in F1.X/ meets Xsing . Now, if we collect all these singular points
on this line, either we get a single point (so that all lines meet in a single point, and X is
a cone) or a positive dimensional singular locus.

Exercise 1.129. ?? Let X � P4 be a smooth cubic threefold, and

fSt D X \Htgt2P1

a general pencil of hyperplane sections of X . What is the degree of the surface swept out
by the lines on the surfaces St , and what is the genus of the curve parametrizing them?

Solution to Exercise ??: The class of all lines in a cubic threefold is given again by
c4.Sym3 S�/, that in G.1; 4/ is the class 18�3;1 C 27�2;2; the ones that also belong to
one of the hyperplanes of the pencil, are exactly those meeting the P2 that is the base
locus of the pencil; so, we just need to intersect with �1, and we get 45�3;2: we get
then a curve C of degree 45. To find the genus, we can consider the map C ! P1,
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obtained sending every line to the element of the pencil it belongs; this map is well
defined, because we can choose the pencil general enough having no line of X in the
base P2. Now, wherever the hyperplane section is smooth (i. e. where the hyperplane
section is a smooth cubic surface) this map has degree 27; considering a general pencil of
hyperplanes, then, we can obtain singular fibers to be only cubic surfaces with one node,
so that fibers are composed by exactly 21 lines (in particular, we have 6 ramification
points of order 2); the number of such situation is the same as the degree of the dual
hypersurface to X , that from what we did in Section ?? is 24. So, we can use Riemann-
Hurwitz formula, to get

2 � 27C 2g � 2 D 24 � 6

that means, g D 46. One should prove that the curve is in fact connected and nonsingular;
otherwise, we only proved that the arithmetic genus of C is 46.

Exercise 1.130. ?? Prove Theorem ?? using the methods of Section ??, that is, by
writing the local equations of Fk.X/ � G.k; n/

Solution to Exercise ??: Let us consider projective coordinates x0; : : : ; xn such that
the plane L is the plane xkC1 D : : : D xn D 0. We can write as usual the defining
polynomial of X as

f .x/ D

nX
iDkC1

xifi .x0; : : : ; xk/C g

where g 2 .xkC1; : : : ; xn/2. Note that as we do Section ??, we can see x0; : : : ; xk as
local coordinates for L, and xkC1; : : : ; xn as linear functions of those, i. e. as sections of
OL.1/; using the identification TLG Š H 0.NL=Pn/ D H 0.OL.1/n�k/, we get that a
vector in TLG is exactly one choice of n � k sections xkC1; : : : ; xn of OL.1/. To have
this vector also lying in TLFk.X/, using again Section ??, we need the further condition
that

nX
iDkC1

xifi .x0; : : : ; xk/ � 0

as polynomials of degree d in x0; : : : ; xk . Let us now consider the exact sequence for
normal bundles for L;X and Pn, and its long exact sequence in cohomology:

0! H 0.NL=X /! H 0.NL=Pn/! H 0.NX=Pn/

0! H 0.NL=X /! H 0.OL.1/n�k/
h
�! H 0.OL.d//:

We have now that the map h is just the multiplication (the ‘dot product”) with the degree
d � 1 polynomials fkC1; : : : ; fn; so, kernel of h, from above, is exactly TLFk.X/; but
it is also H 0.NL=X /, because that is an exact sequence.
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Exercise 1.131. ?? Extending the results of Section ??, suppose that X is a general
cubic surface having two ordinary double points p; q 2 X . Describe the scheme structure
of F1.X/ at the point corresponding to the line L D p q, and in particular determine the
multiplicity of F1.X/ at L.

Solution to Exercise ??: Let us proceed in the same way as in Section ??. Let us again
assume that L W X2 D x3 D 0 (with the neighborhood in G.1; 3/ parametrized in the
same way by a2; a3; b2; b3), that p is the point .1; 0; 0; 0/, and that the tangent cone of
X at p is x1x3 C x22 D 0 ; we get then the same equation

g.x/ D x0x1x3 C x0x
2
2 C ˛x

2
1x2 C ˇx

2
1x3 C 
x1x

2
2 C ıx1x2x3 C �x1x

2
3 C k;

and now let us impose the further condition to be singular at q, that we can say is the
point .0; 1; 0; 0/: we obtain the conditions ˛ D 0 and ˇ D 0 (then the surface is general
so we can assume 
 ¤ 0; in particular, this condition is the same as the tangent cone to q
to be a smooth conic rather than two lines). Now, we can write down the local equations
for F1.X/, as in Section ??: we get8̂̂̂̂

<̂
ˆ̂̂:
a22 D 0

a3 C 2a2b2 C 
a
2
2 C ıa2a3 C �a

2
3 D 0

b3 C b
2
2 C 2
a2b2 C ı.a2b3 C a3b2/C 2�a3b3 D 0


b22 C ıb2b3 C �b
2
3 D 0

Considering the first order terms we go on the plane a3 D b3 D 0, and on this plane
the two other equation cut the ideal .a22; 
b

2
2/ so the intersection is an ideal of degree 4.

This proves that the line L D p q is a point of multiplicity 4 of F1.X/.

Exercise 1.132. ?? Now let X � P3 be a cubic surface and p; q 2 X isolated singular
points of X ; let L D p q. Show that L is an isolated point of F1.X/, and that the
multiplicity

multL F1.X/ � 4

Solution to Exercise ??: Note that by Exercise ??, if L is not an isolated point of
F1.X/, then X is a cone over a point, but than it couldn’t possibly have two isolated
singular points, or it is singular along a curve; thit is impossible too, because in Exer-
cise ?? we also found out that this singular locus meet all the lines in F1.X/, so that
p or q wouldn’t be isolated singularities anymore. The only thing to prove then is that
multL F1.X/ � 4; we will see that this situation arises as degeneration of the situation
of the previous exercise, that will prove the claim.

This exercise is only slightly different from the previous one; the only difference is
that here we are not assuming anymore that p and q are ordinary double points of X ; in
particular, we cannot use anymore the equation g.x/ above, because it assumes that p
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has tangent cone x1x3 C x22 ; something we can assume though, is that the tangent cone
is of the form �x1x3 C �x

2
2 C �x2x3 C �x

2
3 , so that the equation becomes

g.x/ D �x0x1x3 C �x0x
2
2 C �x0x2x3 C �x0x

2
3 C 
x1x

2
2 C ıx1x2x3 C �x1x

2
3 C k

and now, given the fact that when �;�; �; � and 
 are general we are in the situation of
the previous exercise, we can in fact obtain X as limit of surfaces with ordinary double
points at p at q, all containing L, so that the multiplicity of L in the Fano scheme has to
be at least the same, that is, multL F1.X/ � 4.

Exercise 1.133. ?? Let X � P3 be a cubic surface and p1; : : : ; pı isolated singular
points of X . Show that no three of the points pi are collinear.

Solution to Exercise ??: Let us work in coordinates: using notations from the previous
exercises, the equation of a surface that is singular at .1; 0; 0; 0/ and .0; 1; 0; 0/ (and
hence contains the line joining them) is

g.x/ D �x0x1x3 C �x0x
2
2 C �x0x2x3 C �x0x

2
3 C 
x1x

2
2 C ıx1x2x3 C �x1x

2
3 C k:

Let us now impose it to be singular along a third point on the line (without loss of
generality, we can assume it to be .1; 1; 0; 0/); the condition is � D 0, that means that the
polynomial is contained in the ideal .x2; x3/2, so that the surface is singular along the
whole line. So, it cannot be that three of the isolated singularities are collinear points.

Exercise 1.134. ?? Use the result of the preceding two exercises to deduce the statement
that a cubic surface X � P3 can have at most four isolated singular points.

Solution to Exercise ??: Suppose X has only isolated singularities, and at most two;
then, F1.X/ has to be zero dimensional; hence, its degree has to be 27. Now, let us
denote by p1; : : : ; pı the singularities: we have that every line pipj is an isolated point
of F1.X/, of multiplicity at least 4 by Exercise ??. Now, doing the math we get

27 � degF1.X/ �
X

multpipj
F1.X/ � 4

 
ı

2

!

that gives us ı � 4. One example of such cubics surface is the one given by the equationP
i¤j x

2
i x
2
j D 0.

Exercise 1.135. ?? Using the methods of Section ??, show that there exists a pair .X;ƒ/
with X � P7 a quartic hypersurface and ƒ � X a 2-plane such that ƒ is an isolated,
reduced point of F2.X/.

Solution to Exercise ??: Let ƒ be the plane .x3; : : : ; x7/, so we can parametrize a
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neighborhood of it as

A D

0@1 0 0 a13 : : : a17

0 1 0 a23 : : : a27

0 0 1 a33 : : : a37

1A :
Consider now the quartic X whose defining polynomial is the following:

g.x/ D .x30Cx
3
1Cx

3
2/x3C.x

2
1Cx

2
2/x0x4C.x

2
0Cx

2
2/x1x5C.x

2
0Cx

2
1/x2x6Cx0x1x2x7

and let us prove that F1.X/ has an isolated and reduced point at ƒ; note that X contains
the 4-plane .x0; x1; x2/, and fact is triple along it, so that F1.X/ is going to be very wild
away from ƒ; in particular, it will have a component of (at least) dimension 6. If we call
s; t; u projective coordinates on a 2-plane in the neighborhood of ƒ, plugging in into
g.x/ we get

g.s; t; u/ D .s3 C t3 C u3/.a13s C a23t C a33u/C .st
2
C su2/.a14s C a24t C a34u/C

C .s2t C tu2/.a15s C a25t C a35u/C .s
2uC t2u/.a16s C a26t C a36u/C stu.a17s C a27t C a37u/

and the equations for F1.X/ obtained setting to zero the coefficients of that; at first, it is
easy to see that these are only linear polynomials. Let us now use a “smart” process of
elimination to the equations arising in this way; looking at coefficients of s4; t4; u4, we
immediately get that a13 D a23 D a33 D 0; looking at coefficients of s3t; s3u; : : : ; tu3,
and using what we just learnt about ai3, we get that also that

a24 D a34 D a15 D a35 D a16 D a26 D 0:

Looking at coefficients of s2tu; st2u; stu2, we get a17 D a27 D a37 D 0; now,
looking at the remaining three equations (for coefficients of s2t2; s2u2; t2u2) we get the
equations 8̂̂<̂

:̂
a14 C a25 D 0

a14 C a36 D 0

a25 C a36 D 0

whose only solution is when all three are zero. This proves that ƒ is transverse intersec-
tion of hyperplanes, so is a reduced point.

Exercise 1.136. ?? Using the result of Exercise ??, show that the number of 2-planes
on a general quartic hypersurface X � P7 is the number calculated in Exercise ?? (that
is, the Fano scheme F2.X/ is reduced for X general).

Solution to Exercise ??: We can use the proof of Theorem ?? without any modification;
when invoking Corollary ??, about the existence of a smooth point in a single F1.X/,
we can instead use the previous exercise.
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Exercise 1.137. ?? To complete the proof of Proposition ??, let X � P3 is a cubic
surface with one ordinary double point p D .1; 0; 0; 0/, given as the zero locus of the
cubic

F.Z0; Z1; Z2; Z3/ D Z0A.Z1; Z2; Z3/C B.Z1; Z2; Z3/

where A is homogeneous of degree 2 and B homogeneous of degree 3. If we write a
line L � X through p as the span L D p q with q D .0;Z1; Z2; Z3/, show that X is
smooth along L n fpg if and only if the zero loci of A and B intersect transversely at
.Z1; Z2; Z3/.

Solution to Exercise ??: Let us suppose, without loss of generality, that the zero loci of
A and B meet at .1; 0; 0/, and that the tangent line of the curve A at .1; 0; 0/ is Z3 D 0.
This means that we have

F.Z0; Z1; Z2; Z3/ D Z0Z1Z3 C ˛Z
2
1Z2 C ˇZ

2
1Z3 CG.Z0; Z1; Z2; Z3/

where G 2 .Z2; Z3/2. Now, the condition of A and B to meet transversely is ˛ ¤ 0

(because the tangent line to B at .1; 0; 0/ is ˛Z2 C ˇZ3 D 0). But we also have that
˛ D 0 if and only if F is singular at .�ˇ; 1; 0; 0/, so the claim is proved.

Exercise 1.138. ?? Show that there exists a smooth quintic threefold X � P4 whose
scheme F1.X/ of lines contains an isolated point of multiplicity 2.

Solution to Exercise ??: Let us condier the quintic X defined by the equation

g.x/ D x40x2 C x
2
0x1x3.x1 C x3/C x

4
1x4 C x

5
2 C x

5
3 C x

5
4 D 0

that is smooth along L. Then, one can prove using the tools as in Section ?? that F1.X/
has an isolated point of multiplicity 2 at the line defined by the ideal .x2; x3; x4/. Now,
this quintic is not necessarily smooth; but if we consider the linear system of quintics

V D ff jf 2 .x2; x3; x4/
3
C .g/g

so that all elements have the same behavior up to degree 3 as g along L, and so that for
all of those the Fano scheme has multiplicity exactly 2 at L; this linear system separates
points outside of L, so its base locus is exactly L; by Bertini’s theorem, hence, the
general element of V can be singular only along V ; but g itself is smooth along L, so
the general element of V willbe smooth everywhere.

Exercise 1.139. ?? Let ˆ be the incidence correspondence of triples consisting of a
hypersurface X � Pn of degree d D 2n � 3, a line L � X and a singular point p of X
lying on L: that is,

ˆ D f.X;L; p/ 2 PN �G.1; n/ � Pn jp 2 L � X and p 2 Xsingg:

Show that ˆ is irreducible.
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Solution to Exercise ??: Let ‰ � G.1; n/ � Pn be the set of couples .L; p/ such that
p 2 L; then, the image of ˆ by the projection onto G.1; n/ � Pn, is surjective onto
‰, that is irreducible. Fibers of this map ˆ! ‰ are then just linear subspaces of PN ,
of codimension nC d � 1 (one can check this going in coordinates) so that fibers are
irreducible, and hence ˆ is too.

Exercise 1.140. ?? Suppose F and G are two quartic polynomials on P3 and fXt D
V.F C tG/g the pencil of quartics they generate; let �F and �G be the sections of
Sym4 S� corresponding to F and G. Let Xt0 be a member of the pencil containing a
line L � P3.

(a) Find the condition on F and G that L is a reduced point of V.�F ^ �G/ � G.1; 3/.
(b) Show that this is equivalent to the condition that the point .t0; L/ 2 P1 �G.1; 3/ is

a simple zero of the map ��OP1.�1/ �! �� Symd S�.

Solution to Exercise ??: Let us pick coordinates for which L D .x2; x3/, and let us
pick coordinates a; b; c; d for a neighborhood U of L in G.1; 3/ and projective coordi-
nates s; t for lines in U ; the equation of Xt0 will be H WD F C t0G D x2h2.x0; x1/C
x3h3.x0; x1/ C k where k 2 .x2; x3/2; then, both F and G (up to a constant factor)
will contain terms only involving x0; x1, and we will call this polynomial f0.x0; x1/
(its intersection with L gives the intersection of L with the base locus of the pencil).
Now, we want to translate all of this to sections of vector bundles on G.1; 3/; so, we
plug in s and t as in the previous exercises: note that monomials s4; : : : ; t4 are a basis
of a trivialization of Sym4 S� on U ; note also that we want to prove transversality, so
we can forget about all terms of degree 2 in a; b; c; d ; we then have

�F ^ �G D �H ^ �G D .as C bt/h2.s; t/C .cs C dt/h3.s; t/ ^ f0.s; t/C k
0

(k0 is now in .a; b; c; d/2) and we want this to be zero if and only if a D b D c D d D
0; in other words, we want the polynomials sh2; th2; sh3; th3; f0 to be independent
polynomials of degree 4 in s and t , that means, a basis. Another interpretation is the
following; as we did in Exercise ??, we can consider the exact sequence of normal
bundles for L inside the surface S defined by H , and looking in cohonology we have

0! H 0.NL=S /
u
�! H 0.NL=P3/

p
�! H 0.NS=P3/

q
�! H 1.NL=S /

0! 0 D H 0.OL.�2//
u
�! H 0.OL.1/˚2/

p
�! H 0.OL.4//

q
�! H 1.OL.�2//

and it is easy to see, still following Exercise ??, that the condition we just expressed is
the same as G not lying in the image of p, or, that is the same, not sent to zero by q in
H 1.NL=S / (that is isomorphic to H 0.OL/ by Serre duality).

For the second point, let us pick the coordinate t for P1; choosing a parameter u for
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fibers of OP1.�1/, over a point .t;M/ the map of vector bundles is just

u 7! u � .F C tG/.s; t/:

Using the fact that F C tG D H C .t � t0/G, around the point .t0; L/ the map will be

u! u � ..as C bt/h2.s; t/C .cs C dt/h3.s; t/C .t � t0/f0.s; t/C k
00/

(k00 is now in .a; b; c; d; t � t0/2) so that again the zero is simple if and only if the 5
polynomials are independent.

Exercise 1.141. ?? Let † � P34 be the space of quartic surfaces in P3 containing a
line. Interpret the condition of the preceding problem in terms of the geometry of the
pencil D around the line L, and use this to answer two questions:

(a) What is the singular locus of †?
(b) What is the tangent hyperplane TX† at a smooth point corresponding to a smooth

quartic surface X containing a single line?

Solution to Exercise ??: Let H , S and L be as in the previous exercise; if H is a
singular point of †, then for every G the condition above is not satisfied. From the
polynomials point of view, to have sh2; th2; sh3; th3; f0 never independent, we need to
have sh2; th2; sh3; th3 linearly dependent, that means that h2 and h3 have (at least) two
common roots, so that S is singular along L at at least two points. From the cohomology
point of view, in the exact sequence

0! H 0.NL=S /
u
�! H 0.NL=P3/

p
�! H 0.NS=P3/

q
�! H 1.NL=S /

we need p to have a kernel, that means H 0.NL=S / to be nonzero; it is easy to show that
if S is singular along L only at one point, then H 0.NL=S / is still zero, so we need at
least two singular points. In conclusion, †sing is the locus of quartics containing a line,
and being singular in at least two points along it (note that unlike in the case of cubics,
having two isolated singular points does not necessarily mean to contain the line joining
them).

Let now H be a point of † n†sing , and let us find the tangent plane at H , meaning
all G not satisfying the condition of the previous exercise. Note that it is clear (from
both points of view) that this is going to be codimension 1 in Pn; using cohomology, the
condition for G is to lie in the image of

H 0.NL=P3/
p
�! H 0.NS=P3/:

Roughly, this means that a small deformation of H towards G, contains one of the lines
obtained deforming L by a vector in TLG.1; 3/ (if you think about it, this is exactly
what we should expect from the tangent space to † to be!). Considering polynomials,
we need f0 to be in the linear span of sh2; th2; sh3; th3; a geometric interpretation of
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this is the following: for every vector v 2 TLG.1; 3/ (i. e. linear combination of those 4
polynomials), we have 4 points on the line, obtained as zero of the degree 4 polynomial,
but also obtained intersecting the first order deformation of L by v with S ; we want now
the base locus of the family spanned by H and G to intersect L in a quadruple of points
arising in this way, obtained from a vector in TLG.1; 3/.

The following two exercises give constructions of smooth hypersurfaces containing
more than the expected families of lines.

Exercise 1.142. ?? Let Z � Pn�2 be any smooth hypersurface. Show that the cone
pZ � Pn�1 over Z in Pn�1 is the hyperplane section of a smooth hypersurface
X � Pn, and hence that for d > n there exist smooth hypersurfaces X � Pn whose
Fano scheme F1.X/ of lines has dimension strictly greater than 2n � 3 � d .

Solution to Exercise ??: Let us pick coordinates x0; : : : ; xn for which Pn�2 is the
vanishing locus of x0 and x1, and Pn�1 is the vanishing locus of x0; let f .x2; : : : ; xn/
be the polynomial definingZ; note that in Pn�1 the equation of pZ is f again. Consider
now the hypersurface Z defined by the polynomial

f .x0; : : : ; xn/ D x
d
0 C x0x

d�1
1 C f .x2; : : : ; xn/

whose hyperplane section x0 D 0 is the cone pZ. This hypersurface is smooth: in fact,
from the fact that Z, the only way for the partial derivatives @=@xi for i D 2; : : : ; n to be
all zero, is if all coordinates x2; : : : ; xn are zero; then considering the other two partial
derivatives (

@
@x0
f D dxd�10 C xd�11 D 0

@
@x1
f D .d � 1/x0x

d�2
1 D 0

we get that also x0 D x1 D 0, that means, Z is smooth; furthermore, Z contains (at
least) an n � 3 dimensional family of lines, and whenever d > n this is bigger than the
expected dimension 2n � 3 � d ; this explains why the condition d � n is necessary in
the de Jong/Debarre conjecture.

Exercise 1.143. ?? Take n D 2mC 1 odd, and let ƒ � Pn be an m-plane. Show that
there exist smooth hypersurfaces X � Pn of any given degree d containing ƒ, and
deduce once more that for d > n there exist smooth hypersurfaces X � Pn whose Fano
scheme F1.X/ of lines has dimension strictly greater than 2n � 3 � d .

Solution to Exercise ??: Consider coordinates x0; : : : ; x2mC1 such thatƒ D .x0; : : : ; xm/.
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Then, consider the polynomial

f .x/ D

mX
iD0

.xdi C xix
d�1
iCmC1:

This gives rise to a smooth hypersurface X (imposing all partial derivatives to zero,
gives mC 1 systems as the one in the previous exercise). So, F1.X/ contains a G.1;m/,
that has dimension 2.m � 2/ D n � 5, that for d > nC 2 is bigger than the expected
dimension.

Note that the construction of Exercise ?? cannot be modified to provide counterex-
amples to the de Jong/Debarre conjecture, since by Corollary ?? there do not exist
smooth hypersurfaces X � Pn containing linear spaces of dimension strictly greater
than .n � 1/=2. The following exercise shows that the construction of Exercise ?? is
similarly extremal, but is harder: it requires use of the second fundamental form of a
hypersurface (see ?]).

Exercise 1.144. ?? Let X � Pn be a smooth hypersurface of degree d > 2. Show that
X can have at most finitely many hyperplane sections that are cones.

Solution to Exercise ??: The second fundamental form (one of its forms) on an hyper-
surface X is a map of vector bundles on X

g W N �
X=Pn ! Sym2 TX�

such that for every point p ofX , the image in the fiber is the equation of the tangent cone
at p of the hyperplane section X \ PTpX ; in particular, it is zero if p in X \ PTpX
is a singular point of multiplicity ¿2. This map is obtained from the differential of the
Gauss map to the dual hypersurface

G W X ! Pn�

so in particular if g is globally zero, then G is globally constant.

Suppose now we have a curve C of points of X such that all hyperplane sections
of points of C are cones; in particular, this means that g is zero at all these points, and
hence that G is constant along the curve; this means that all points of C have the same
tangent hyperplane H , and hence that H \X is singular all along X . It is now an easy
exercise to show that if an hyperplane section has positive dimensional singular locus,
then the hypersurface itself cannot be smooth (all partial derivatives inside H vanish on
the curve C , and the partial derivative that is normal to H imposes one condition, so
that on finitely many points of C all partial derivatives vanish).

To see some of the kinds of odd behavior the variety of lines on a smooth hypersur-
face can exhibit, short of having the wrong dimension, the following series of exercises
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will look at the Fermat quartic X � P4, that is, the zero locus

X D V.Z40 CZ
4
1 CZ

4
2 CZ

4
3 CZ

4
4/:

The conclusion is that F1.X/ has 40 irreducible components, each of which is every-
where non-reduced! We start with a useful more general fact:

Exercise 1.145. ?? Let S D p C � P3 be the cone with vertex p over a plane curve
C of degree d � 2, and L � S any line. Show that the tangent space TLF1.S/ has
dimension at least two, and hence that F1.S/ is everywhere nonreduced.

Solution to Exercise ??: Let us pick coordinates x0; : : : ; x3 for which p D .1; 0; 0; 0/,
L D .x2; x3/ and the equation of C is xd�11 x3 C k where k 2 .x2; x3/2 (this will also
be the equation for S in P3). Let us write local equations for F1.S/ around L using
coordinates a; b; c; d ; being interested in Zariski tangent spaces, we will only care about
linear terms in a; b; c; d ; but the monomial xd�11 x3 (the only one giving linear terms in
a; b; c; d gives only the two equations b D 0; d D 0, so that the Zariski tangent space is
2 dimensional. But we also know that F1.S/ is a 1-dimensional scheme (otherwise S
would be a plane) so that F1.S/ is everywhere nonreduced.

Exercise 1.146. ?? Show that X has 40 conical hyperplane sections Yi , each a cone
over a quartic Fermat curve in P2.

Solution to Exercise ??: For every two variables Zi and Zj and every fourth root � of
�1, we have that the hyperplane section Zi C �Zj D 0 is a cone over a quartic (smooth)
plane curve; there are 10 choices for the couples of variables, and 4 for the root of �1,
that gives 40 choices total.

Exercise 1.147. ?? Show that the reduced locus F1.Yi /red has class 4�3;2.

Solution to Exercise ??: Yi is a cone over a plane quartic curve, so that F1.Yi / is
one dimensional (and everywhere nonreduced, from Exercise ??); to find the class
ŒF1.Yi /red� we need to intersect with �1, that means, lines meeting a P2; but Yi \ P2 is
generically 4 points, so the lines through these points are those meeting P2; we get then
ŒF1.Yi /red� D 4�3;2.

Exercise 1.148. ?? Using your answer to Exercise ??, conclude that

F1.X/ D

40[
iD1

F1.Yi /I

in other words, F1.X/ is the union of 40 double curves.

Solution to Exercise ??: From Theorem ??, we know that F1.X/ is 1-dimensional, so
it consists of the 40 nonreduced curves F1.Yi / and possibly some other ones. Now,
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everyone of this curves has class k�3;2 where k � 8, and k D 8 only if these are just
double curves. So, on one hand we get that the coefficient of �3;2 in ŒF1.X/� is bigger
than or equal to 8 � 40 D 320. But F1.X/ has the proper dimension, so we can calculate
its class using Chern classes: using the splitting principle, we get ŒF1.X/� D 320�3;2,
that proves that F1.X/ is only the union of the 40 curves F1.Yi /, and that they are all
double.

Exercise 1.149. ?? Show that

(a) There exist smooth quintic hypersurfaces X � P5 containing a 2-plane P2 � P5;
and

(b) For such a hypersurface X , the family of conic curves on X has dimension strictly
greater than the number �.5; 5; 2/ of Conjecture ??.

Solution to Exercise ??: For the first point, we can use Exercise??. For the second, a
plane contains a 5 dimensional family of conics, and in this case �.5; 5; 2/ D 3, so the
dimension is bigger; this tells in particular that when d D n we cannot extend the de
Jong/Debarre conjecture to the case of higher degree rational curves.

1.7 Chapter 7
Exercise 1.150. ?? Let S D P1 � P1, and let fCt � Sgt2P1 be a general pencil of
curves of type .a; b/ on S , where a; b > 0. What is the expected number of curves Ct
that are singular? (Make sure your answer agrees with (??) in case .a; b/ D .1; 1/!)

Solution to Exercise ??: If all conditions of Proposition ?? are met, then the answer is
the degree of c2.P1.OP1�P1.a; b///, that is,

deg.3�2 C 2�c1 C c2/ D deg.3.a˛ C bˇ/
2
C 2.a˛ C bˇ/.�2˛ � 2ˇ/C 4˛ˇ/

D 6ab � 4a � 4b C 4

where we used that

c.�P1�P1/ D .1C 2˛/.1C 2ˇ/:

When .a; b/ D .1; 1/, we get a general pencil of hyperplane sections of a quadric surface,
so we expect the degree of the dual surface (so, 2) singular elements, that corresponds to
the formula that we found.

Exercise 1.151. ?? Prove that the number found in the previous exercise is the actual
number of singular elements; that is, prove the three hypotheses of Proposition ?? in the
case of S D P1 � P1 and the line bundle O.a; b/.



Chapter 7 Section 1.7 77

Solution to Exercise ??: If we have .a; b/ D .1; 1/, then the three hypotheses hold: in
fact, the only possible singular element of such linear series is the union of two lines,
so with one single singularity, that is a simple double point. About point (c), this is
obviously true for all .a; b/. Consider now, in the linear series of .a; b/, the curve C
obtained by the union of a .1; 1/ curve that is singular at a point p (hence having a
simple node), and any .a � 1; b � 1/ curve not passing through p. Consider now the
linear system

V D ff 2 H 0.O.a; b// j f singular at pg

by Bertini, the general element is smooth away from the base locus of V , that is, away
from p; but the element C of this linear series has a simple node at p, so the general
element will too. We conclude that a general singular .a; b/ curve has only one singularity
that is a simple node. This same argument applies to prove the implication e D 1 to
e > 1 in Section ??.

Exercise 1.152. ?? Let S � P3 be a smooth cubic surface, and L � S a line. Let
fCtgt2P1 be the pencil of conics on S cut out by the pencil of planes fHt � P3g
containing L. How many of the conics Ct are singular? Use this to answer the question:
how many other lines on S meet L?

Solution to Exercise ??: Again, we can invoke Proposition ??, that gives us that the
number is

deg.3�2 C 2�c1 C c2/:

Now, the first Chern class of L is � D � � ŒL�, and remember that deg.� � ŒL�/ D 1 and
deg.ŒL�2/ D �1; moreover,

c.�S / D 1 � � C 3�
2

so that we get

deg.3�2 C 2�c1 C c2/ D deg.3.� � ŒL�/
2
C 2.� � ŒL�/.��/C 3�2/

D 3 � 0C 2.�2/C 9 D 5:

To check that we are in the hypothesis of Proposition ??, this time it is very easy because
the element of the pencil is a conic curve, that can only degenerate as two incident lines
(not as a double line, because a smooth cubic surface has not a nonreduced hyperplane
section). This result has also consequences on the combinatorics of the 27 lines in S ,
because singular conics correspond to couple of lines that form a “triangular” hyperplane
section of S together with L; using this, we can see that L meets 10 of the other lines on
S .

Exercise 1.153. ?? Let p 2 P2 be a point, and let fCt � P2gt2P1 be a general pencil
of plane curves singular at p—in other words, let F and G be two general polynomials
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vanishing to order 2 at p, and take Ct D V.t0F C t1G/. How many of the curves Ct
will be singular somewhere else as well?

Solution to Exercise ??: In this problem we cannot use Proposition ?? on P2, because
condition (c) is clearly not met. To avoid this issue, we can blow up P2 at the point p,
and on the blowup X we can consider the proper transforms of the curves in the original
pencil, and get a pencil of sections of OX .d� � 2E/; now, condition (c) is met, and (a)
and (b) descend from the P2 case. So, we can use the formula again: from

c.�X / D 1 � 3� CE C 4�
2

we get

deg.3.d� � 2E/2 C 2.d� � 2E/.�3� CE/C 4�2/ D 3d2 � 6d � 4

that is the number of curves having another singularity away from p.

Exercise 1.154. ?? Let S D X1 \ X2 � P4 be a smooth complete intersection of
hypersurfaces of degrees e and f . If fHt � P4gt2P1 is a general pencil of hyperplanes
in P4, find the expected number of singular hyperplane sections S \Ht . (Equivalently:
if ƒ Š P2 � P4 is a general 2-plane, how many tangent planes to S will intersect ƒ in
a line?)

Solution to Exercise ??: We invoke again Proposition ??; remember that we have

c.�X / D
.1 � �/5

.1 � d�/.1 � e�/
D 1C .d C e�5/�C .d2C e2C2de�5d �5eC10/�2

and we want to find

c2.P1.1// D deg.3�2 C 2.d C e � 5/�2 C .d2 C e2 C 2de � 5d � 5e C 10/�2/
D de.d2 C e2 C 2de � 3d � 3e C 3/:

Exercise 1.155. ?? Let X � P4 be a smooth hypersurface of degree d . Using for-
mula (??), find the expected number of singular hyperplane sections of X in a pencil.
Again, compare your answer to the result of Section ??.

Solution to Exercise ??: To apply formula (??), we need

c.�X / D
.1 � �/5

.1 � d�/
D

D 1C .d � 5/� C .d2 � 5d C 10/�2 C .d3 � 5d2 C 10d � 10/�3



Chapter 7 Section 1.7 79

and then we have

deg.c3.P1.1/// D deg.4�4 C 3.d � 5/�4 C 2.d2 � 5d C 10/�4C
C .d3 � 5d2 C 10d � 10/�4/ D

D d.d3 � 3d2 C 3d � 1/ D d.d � 1/2

that is in fact the degree of the dual hypersurfaces as we found it in Section ??. To check
that the hypotheses of Proposition ??, it is possible to follow the same was as for surfaces
in P3 in Section ??

Exercise 1.156. ?? Let X Š P1 � P2 � P5 be the Segre threefold. Using formula (??),
find the number of singular hyperplane sections of X in a pencil.

Solution to Exercise ??: Using Pformula (??), and the fact that

c.�X / D .1 � 2˛/.1 � 3ˇ C 3ˇ
2/ D 1 � 2˛ � 3ˇ C 6˛ˇ C 3ˇ2 � 6˛ˇ2;

we get

c3.P1.1; 1// D 4.˛ C ˇ/3 C 3.˛ C ˇ/2.�2˛ � 3ˇ/C 2.˛ C ˇ/.6˛ˇ C 3ˇ2/ � 6˛ˇ2

D 0:

Note that condition (a) of Proposition ?? is not satisfied; in fact, the singular elements
are .1; 1/ are divisors splitting in a P2 fiber and in a P1 � P1, meeting (hence being
singular) along a line. Still, though, from the discussion after Proposition ??, this implies
that a general pencil has no singular elements. A diffenrent way to get this, is to prove
that the dual variety of this Segre variety is not an hypersurface (it is in fact isomorphic
to another Segre variety of the same kind), so a general pencil of hyperplanes does not
contain any tangent one. A simple way to get this is just counting dimensions: the set of
all possibilities for singular hyperplane sections, as union of a P2 and a P1 � P1 is 3
dimensional, hence codimension 2 in P5�. See also Exercise ?? for the more general
case of duals of scrolls.

Exercise 1.157. ?? Let S D X1 \ X2 � P4 be a smooth complete intersection of
hypersurfaces of degrees e and f . What is the expected number of hyperplane sections
of S having a triple point? (Check this in case e D f D 2!)

Solution to Exercise ??: For this exercise, we need to consider P2.OS .1//; we want
the degeneracy locus among 5 sections, that will be given by c2 of it. To find the
Chern class of this bundle, let us first find the Chern classes of the vector bundle
E D O˚�S ˚ Sym2�S ; we know that the Chern classes of P2.OS .1// are the same
as those of E ˝OS .1/ (even though they are not isomorphic!) so in the end we will use
Proposition ?? for Chern classes of tensor products by a line bundle. Using Examples ??
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and ??, we get

c.�S / D
1 � 5� C 10�2

.1 � e�/.1 � f �/
D 1C .eCf � 5/�C .e2Cf 2C ef � 5e� 5f C 10/�2

c.Sym2�S / D 1C 3.e C f � 5/� C 2.3e2 C 3f 3 C 4ef � 20e � 20f C 45/�2

c.E/ D 1C 4.e C f � 5/C .10e2 C 10f 2 C 15ef � 75e � 75f C 175/�2

and hence

c2.P2.OS .1/// D c2.E ˝OS .1// D c2.E/C 5c1.E/� C 15�2

D .10e2 C 10f 2 C 15ef � 55e � 55f C 90/�2

so that the degree is de.10e2 C 10f 2 C 15ef � 55e � 55f C 90/; this is only the
expected numbers: to prove that this is indeed the right number, one should try to extend
Proposition ?? to this case. When e D f D 2, we get 40; this is the case of a Del Pezzo
surface of degree 4; that means, the blow up of P2 at 5 points p1; : : : ; p5, embedded in
P4 through the linear system of (proper transforms of) cubics through the 5 points. The
elements with a triple point in this linear system are:

� the line through p1; p2, the line through p3; p4, and the line through the fifth point
p5 and the point q of intersection of the previous two lines (after permutations, there
is 15 such curves);

� the conic through the 5 points, and the line tangent to this conic at one of the points
p1; in the blowup, these two curves and the exceptional divisor have a triple point
(there is 5 of them);

� the line through p1; p2, and the conic through p2; p3; p4; p5 tangent to the line at
p2 (there is 20 of them).

In total, then, there is 40 of them.

Exercise 1.158. ?? Let S � Pn be a smooth surface of degree d whose general
hyperplane section is a curve of genus g; let e and f be the degrees of the classes
c1.TS /2 and c2.TS / 2 A2.S/. Find the class of the cycle T1.S/ � G.1; n/ of lines
tangent to S in terms of d , e, f and g; from exercise ??, we need only the intersection
number ŒT1.S/� � �3.

Hint: consider instead the variety of tangent planes T2.S/ � G.2; n/, and find the
intersection with �2 as the intersection with .�1/2 minus the intersection with �1;1.

Solution to Exercise ??: The intersection number ŒT1.S/� � �3 is the number of tangent
lines that is tangent to S , that meet a general Pn�4; this is the same as asking how many
tangent planes to S meet the Pn�4, that means, the intersection number ŒT2.S/� � �2 in

G.2; n/; remember that we have a map S
f
�! T2.S/, that we will suppose is birational.
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As suggested in the hint, let us find it as the difference between intersections with �21 and
�1;1. By push pull formula, the degree of the intersection ŒT2.S/� ��21 2 A

2n�2.G.1; n//
is the same as the self intersection of the class f ��1 in A2.S/. But now, ŒT2.S/� � �1
are all tangent planes meeting a general Pn�3; projecting away from that plane onto P2,
these tangent planes correspond to points of S that are branch points for the restriction
of the projection � W S ! P2; but this class is equal to KS � ��KP2 D KS C 3H .
Remember now that the degree of �2 is d , that the degree of K2S is e, and that by
adjunction �.KS C �/ D 2g � 2; collecting everything, we get that the degree of
f ��21 is 3d C e C 12g � 12, hence this is the degree of ŒT2.S/� � �21 ; to find the class
ŒT2.S/� � �1;1, we need to find how many tangent planes meet a Pn�2 in a line; that
means, how many tangent planes are contained in one of the hyperplanes in the pencil
of those containing the Pn�2; that means, how many hyperplanes in that pencil cut
a singular section on S ; this is then a problem of singular elements in a linear series,
and we need to find c2.P1.OS .1///; using Proposition ??, we get that this number is
d Cf C 4g� 4. Collecting everything, we get that the degree of ŒT2.S/� ��2 (and hence
of ŒT1.S/� � �3) is

2d C e � f C 8g � 8

and remembering also what we found in Exercise ?? (and using the indetermined
coefficients method) we get

ŒT1.S/� D .2d C e � f C 8g � 8/�n�1;n�4 C .2d C 2g � 2/�n�2;n�3:

We will see alternative ways to solve these problems in Exercises ?? and ??.

Exercise 1.159. ?? Let S � P3 be a general surface of degree d , and B a general net of
plane sections of S (that is, intersections of X with planes containing a general point
p 2 P3). What are the degree and genus of the curve � � S traced out by singular
points of this net? What are the degree and genus of the discriminant curve? Use this to
describe the geometry of the finite map �p W S ! P2 given by projection from p.

Solution to Exercise ??: Following the discussion in ??, let us consider the curve
†B � B�S (that is smooth by Bertini). Let us find its class; callingE D ��2 .OS˚�S /,
the class we need is c3.OB�S .1; 1/ ˝ E/ (remember that this vector bundle is not
isomorphic to the bundle of principal parts that we are using, they only share Chern
classes); using all the required formulas, we get in the end

Œ†B� D .d � 1/�
2
B�S C .d � 1/

2�B�
2
S ;

where we used that �3B D �
3
S D 0 Note that this formula reflects the fact that if d D 1,

that is if S is a plane, there is no singular plane section so the class is zero. To find the
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genus of †B, we can use adjunction as in the proof of Proposition ??; we then get

2g � 2 D deg.Œ†B� � .�c1.TB � S/C c1.OB�S .1; 1/˝E// D

D deg.Œ†B� � .�.3�B C .4 � d/�S /C .3�B C .d � 1/�S // D

D deg.Œ†B� � .2d � 5/�S / D .d � 1/.2d � 5/d

where we used that the degree of �2B�
2
S is d ; we then find g D .d�2/.2d2�3d�1/

2
. To find

the degree of the image � D �2.†B/, by push pull we just need to find the degree of
Œ†B� � �S , that is d.d � 1/ (note that from Exercise ?? we have that the �2 W †B ! �

is birational, so the two curves have the same geometric genus). To find the arithmetic
genus of �2.†B/, we can use adjunction, remembering that the class of � in A1.S/ is
c1.P1.1// D .d � 1/�S ; we then get

2g� � 2 D deg.Œ�� � .Œ��C c1.KS // D

D deg.d � 1/�S � .2d � 5/�S D .d � 1/.2d � 5/d

that gives g� D g, so for � arithmetic and geometric genus coincide, so we can conclude
that � is smooth. About the discriminant curve D D �1.†B/, its degree, by the push
pull formula again, is given by d.d � 1/2, hence its arithmetic genus is

�
d.d�1/2�1

2

�
,

that is very different from the geometric one, unless d D 2 where they are the same; we
get again the statement that the discriminant curve is smooth if and only if d D 2. The
geometric genus of D is still the same of †B, because the general singular hyperplane
section is singular only at one point (see Section ??).

All of this is related to the geometry of the projection � of S away from the basepoint
p of the net B onto P2 (that can be identified with the dual of B); points of � will be
ramification points of � on S , and the branch locus on P2 will be the dual curve D�.

Exercise 1.160. ?? Verify that for a general curve C � P2 of degree d the number
3d.d � 2/ is the actual number of flexes of C ; that is, all inflection points of C will have
weight 1.

Solution to Exercise ??: Let us consider the “universal hyperflex point-line” correspon-
dence

ˆ D f.p;L; C / 2 P2 � P2� � PN j mp.C;L/ � 4g:

If the image of ˆ under the projection onto PN is not dominant, then the general
plane curve will not have any hyperflex (that means, no flexes of weight 2 or more). But
considering the projection onto the 3-dimensional correspondence point-line in P2�P2�,
fibers are linear subspaces of PN of codimension 4, so ˆ has dimension N � 1 that
proves the claim.

Exercise 1.161. ?? Let fCt � P2gt2P1 be a general pencil of plane curves of degree
d � 3; suppose C0 is a singular element of C (so that in particular by Proposition ??,
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C0 will have just one node as singularity). By our formula, C0 will have 6 fewer flexes
than the general member Ct of the pencil. Where do the other 6 flexes go? If we consider
the incidence correspondence

ˆ D f.t; p/ 2 P1 � P2 jCt is smooth and p is a flex of Ctg;

what is the geometry of the closure of ˆ near t D 0? Bonus question: describe the
geometry of

Q̂ D f.t; p; L/ 2 P1 � P2 � P2� jCt smooth, p a flex of Ct and L D TpCtg

near t D 0.

Solution to Exercise ??: Let us first deal with Q̂ ; the statements about ˆ will come as
consequence. Note that for t ¤ 0, in every element .t; p; L/ we have mp.Ct ; L/ � 3;
this is a closed condition, so it will hold also on the limit; on C0, then, this condition
is satisfied for the “honest” flexes, but also for the node n with the two tangent lines
M1 and M2; going in local coordinates it is possible to prove that every honest flex
on C0 is limit of at most one flex of neighbor fibers (otherwise it would become an
hyperflex, and a general nodal curve does not have any); so, 6 flexes of fibers Ct where
t ¤ 0 degenerate to either .0; n;M1/ or .0; n;M2/; this tells us immediately that the
curve ˆ has an order 6 ramification point over 0. With an argument of monodromy (see
?]) it is possible to prove that Q̂ has two order 3 ramification points at .0; n;M1/ or
.0; n;M2/, so that the 6 remaining flexes are distributed as 3 and 3 on the two branches
at the node.

Exercise 1.162. ?? Find the points on P1, if any, that are ramification points for the
maps P1 ! P3 given by

.s; t/ 7! .s3; s2t; st2; t3/ 2 P3

and

.s; t/ 7! .s4; s3t; st3; t4/ 2 P3:

Solution to Exercise ??: For the first, Plücker formula tells us that there are no ram-
ification points. For the second, the formula gives 4 as sum of weight of inflexionary
points; note that an inflexionary point means a plane with order of contact at least 4,
so we could not really expect any inflexionary point from a degree 3 curve. To find
these points, let us trivialize the map .O1P/

˚4 ! P3.4/ setting s D 1; as in the proof of
Theorem ??, inflexionary point are given by the determinant of0BBB@

1 t t3 t4

0 1 3t2 4t3

0 0 6t 12t2

0 0 6 24t

1CCCA



84 Chapter 1 Solutions to Selected Exercises

that is 72t2, so that we have an inflexionary point of order 2 at Œ1; 0�; changing chart and
setting t D 1, we get also an inflexionary point of weight 2 at Œ0; 1�.

Exercise 1.163. ?? Show that the only smooth, irreducible and nondegenerate curve
C � Pr with no inflection points is the rational normal curve.

Solution to Exercise ??: From Plücker formula, we need the number .rC1/.d C rg�
r/ D 0; this happens if and only if g D 0 and r D d , that means a rational normal curve
(notice that a degenerate curve does not come from the embedding of a linear series so it
is not allowed here).

Exercise 1.164. ?? Observe that in case g D 1 and d D r C 1—that is, the curve is an
elliptic normal curve E—the Plücker formula yields the number .r C 1/2 of inflection
points. Show that these are exactly the translates of any one by the points of order r C 1
on E, each having weight 1.

Solution to Exercise ??: A point p is inflexionary if and only if there is a divisor in the
linear series containing a multiple of p bigger than or equal than r C 1; in this case the
degree is r C 1, so p is inflexionary if and only if .r C 1/p is in the linear series. If p is
inflexionary, all its traslates by an r C 1-torsion point are still inflexionary (because the
embedding is normal); so there are .r C 1/2 different inflexionary points, so they are all
of weight one.

Exercise 1.165. ?? Let C be a smooth curve of genus g � 2. A point p 2 C is called
a Weierstrass point if there exists a nonconstant rational function on C with a pole of
order g or less at p and regular on C n fpg.

(a) Show that the Weierstrass points of C are exactly the inflection points of the
canonical map ' W C ! Pg�1; and

(b) Use this to count the number of Weierstrass points on C .

Solution to Exercise ??: Let p be an inflexionary point of the canonical map; this
means that there is an hyperplane section (i.e. a differential form) of the kind gp CD
where D is a positive divisor of degree g � 2; this means, h0.K � gp/ � 0, so using the
Riemann-Roch formula we get

h0.gp/ D 1C h0.K � gp/ � 1

that is exactly the condition for the existence of such a rational function. Using Pl”ucker
formula, we get that the sum of the weights of Weiestrass points of a curve is g3�g.

Exercise 1.166. ?? Let PN be the space of all plane curves of degree d � 4, and let
H � PN be the closure of the locus of smooth curves with a hyperflex. Show that H is
a hypersurface. (We’ll be able to calculate the degree of this hypersurface once we have
developed the techniques of Chapter ??.)
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Solution to Exercise ??: Looking back at Exercise ??, we only need to prove that
the projection from the universal hyperflex onto PN is generically finite. From the
irreducibility ofˆ, we only need to show one curve exhibiting a single isolated hyperflex;
consider now the Fermat curve, the curve C given by the equation x40 C x

4
1 C x

4
2 D 0.

Intersecting with the Hessian curve, it has 12 isolated flexes (and it is easy to show they
have all weight 2). When the degree is higher, it is sufficient to consider the union of C
and any other curve not passing through flexes of C ; this is still going to have isolated
hyperflexes.

Exercise 1.167. To prove that a general complete intersection C � P3 does not have
weight two inflectionary points, we need to prove that it does not have flex lines (lines
with multiplicity 3 intersection with the curve) or planes with a point of contact of order
5. Prove the first statement, that a general complete intersection of two surfaces S1 and
S2 of degrees d1 � d2 > 1 does not have a flex line.

Solution to Exercise 1.167: Let us consider the incidence correspondence ˆ inside

P3 �G.1; 3/ � PN1 � PN2

such that elements are .p;L; F1; F2/ such that the surfaces given by the polynomials F1
and F2 intersect transversely in a (complete intersection) curveC , andL is a flex curve of
C at the point p. Note that this subscheme is not closed, and that the same curve appears
plenty of time; in particular, when F1 changes by a multiple of F2, so this projects down
onto the space Hd1;d2

parametrizing complete intersections of multidegree d1; d2 with
fibers of dimension

�
d1�d2C3

3

�
. Given a couple .p;L/, to get a curve C with a flex there

we need to have both surfaces to vanish along L at p with multiplicity 3; so, it imposes
three indipendent linear conditions on PN1 and PN2 (this is because both d1 and d2 are
greater than 1, otherwise this wouldn’t be true). So, the dimension of ˆ is N1 CN2 � 1;
now, ˆ also projects onto Hd1;d2

with fibers of dimension
�
d1�d2C3

3

�
(because also

in ˆ we can change F1 by a multiple of F2), so it has image of codimension 1; this
proves that the general complete intersection does not have a flex line. Note that the
condition d2 > 1 is necessary: otherwise, we would have a plane curve, that for d1 � 3
has flexes (hence flex lines). The spaces Hd1;d2

will be introduced and described in the
next chapter.

Exercise 1.168. ?? Let S � P3 be a general surface of degree d � 2, p 2 S a general
point andH D TpS � P3 the tangent plane to S at p. Show that the intersectionH \S
has an ordinary double point at p.

Solution to Exercise ??: We need to consider the incidence correspondence

ˆ D f.p;H; S/ 2 P3 � P3� � PN j H D TpX;X \ TpX cusp at pg

that is, a universal point-plane correspondence for hyperplane sections that have not
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an ordinary double point. Projecting onto the 5-dimensional incidence in P3 � P3�,
fibers are irreducible degree two hypersurfaces in codimension 3 linear subspaces of
PN , so that ˆ is irreducible and of dimension N C 1; when projecting onto the N C 2-
dimensional universal point correspondence in P3 � PN , the map from ˆ cannot be
dominant. We then proved that the at the general point of the general surface of degree
d , the plane section has an ordinary double point.

Exercise 1.169. ?? Let S D P1 � P1, and let fCt � Sgt2P1 be a general pencil of
curves of type .a; b/ on S . Use the topological Hurwitz formula to say how many of the
curves Ct are singular. (Compare this with your answer to Exercise ??.)

Solution to Exercise ??: A pencil of .a; b/ curves is going to have 2ab basepoints,
so that the total space is the blow up of P1 � P1 at 2ab points, hence having Euler
characteristic �.X/ D 4C 2ab. The general fiber is going to have genus .a� 1/.b � 1/,
so that �.C�/ D 2aC 2b � 2ab. We then have

ı D �.X/ � �.P1/�.C�/ D 6ab � 4a � 4b C 4

that is the same that we found in Exercise ??.

Exercise 1.170. ?? Let p 2 P2 be a point, and let fCt � P2gt2P1 be a general pencil
of plane curves of degree d singular at p, as in Exercise ??. Use the topological Hurwitz
formula to count the number of curves in the pencil singular somewhere else.

Solution to Exercise ??: The base points of the pencil are the point p and d2 � 4
other general points in P2; the total space will then be the blow up of P2 at d2 � 3,
so that �.X/ D d2. The arithmetic genus of the general curve is

�
d�1
2

�
� 1, so that

�.C�/ D �d
2 C 3d C 2. We then have

ı D �.X/ � �.P1/�.C�/ D 3d2 � 6d � 4

that is the same as in Exercise ??.

Exercise 1.171. ?? Let P5 be the space of conic plane curves, and D � P5 the discrim-
inant hypersurface. Let C 2 D be a point corresponding to a double line. What is the
multiplicity of D at C , and what is the tangent cone?

Solution to Exercise ??: Consider a general pencil of conics containing C ; the base
locus will be two degree 2 schemes supported in one point, and so there will be only
another singular element in the fiber, composed by the two lines spanned by this two
schemes. The degree of the discriminant hypersurface is 3, so it follows that multC .D/ D
2. To find the tangent cone, we need to find the pencils for which the above situation
does not happen; this is exactly the case where the base locus is supported in one point
p; in this case, we have families only including conics that are tangent to the line where
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C is supported; this is going to be the tangent cone (that is in fact a cone over a singular
quadric).

Exercise 1.172. ?? Let P14 now be the space of quartic plane curves, and D � P14 the
discriminant hypersurface. Let C 2 D be a point corresponding to a double conic. What
is the multiplicity of D at C , and what is the tangent cone?

Solution to Exercise ??: We will use a different way (that in fact gives a different proof
of the previous exercise). Consider a general pencil ft0F C t1Q2g where Q2 is a double
conic and F is a general quartic; notice that the base locus, the intersection of F and
Q2 is eight double points. The total space will then be the blow up of P2 at 8 points;
we cannot use still the topological Hurwitz formula, because the space obtained in this
way is still singular at the 8 points on the fiber Q2 (this happens whenever there is a
nonreduced base locus, so also in the case of the previous exercise). So, let us blow up
again at these 8 points; now, the fibers are going to be all curves in our pencil, besides
Q2 that now has become the union C0 of a rational curve (the conic itself) with the 8
new exceptional curves; that means, with topological Euler characteristic 10. Now, we
can use the topological Hurwitz formula; the fibers with a different Euler characteristic
are ı curves with a node, and the central fiber Q2 [

S8
iD1Ei . We then get

ı D �.X/ � �.Ct /�.P1/ � .�.C0/ � �.Ct // D 19 � .�4/ � 2 � 14 D 13

so only other 13 singular fibers; the degree of the discrimimant hypersurface is 27, so
the double conic must be multiplicity 14. Notice that this is the smallest multiplicity
that implies that every pencil containing two double conics is entirely contained in
the discriminant hypersurface. The tangent cone will be composed by quartics that are
tangent to the conics; it is easy to see that this is a degree 14 hypersurface, confirming
again that the multiplicity at double conics is 14.

1.8 Chapter 8
Exercise 1.173. ?? Let D � P2 be a smooth curve of degree d , and let Z � X be the
closure, in the space X of complete conics, of the locus of smooth conics tangent to D.
Find the class ŒZD� 2 A1.X/ of the cycle Z.

Solution to Exercise ??: Following Lemma ??, the class will be ŒZD� D p˛C qˇ; we
will use instead a different basis for the Picard group, using the fact that the space of
complete conics is the same as the blowup of P5 along the Veronese surface of double
lines; we will use the hyperplane class ˛ of P5 and the exceptional divisor � (that is
2˛ � ˇ as we see in the end of Section ??). We can then write ŒZD� D u˛ C vˇ;
intersecting with a general pencil of conics in P5 (that in Lemma ?? is called 
),
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we get a pencil of degree 2d divisors on D, that have, byRiemann-Hurwitz theorem,
4d C 2g � 2 D d2 C d singular elements (that correspond to conics that are tangent
to D): this will be the coefficient u. To find the coefficient of �, we need to find the
multiplicity of ZD in P5 along S ; considering a general pencil including a double line,
we see that the linear system on D has one fiber that is d double points (the intersection
with the double line), and d2 other ramifications: by an argument as in ??, this proves
that this multiplicity is d ; we then get

ŒZD� D d.d C 1/˛ � d� D d.d � 1/˛ C dˇ

going back to the other basis.

Exercise 1.174. ?? Now let D1; : : : ;D5 � P2 be general curves of degrees d1; : : : ; d5.
Show that the corresponding cycles ZDi

� X intersect transversely, and that the
intersection is contained in the open set U of smooth conics.

Solution to Exercise ??: The fact that the intersection lies in the open set of smooth
conics can be proved in the exact same way as if D1; : : : ;D5 were conics, as it is done
in Section ??. Given a point C in the cycle ZD , let us find the tangent space TCZDi

;
a general pencil of conics containing C induces a degree 2d linear system on D with
d2 C d � 1 other singular elements (that are conics tangent to D); XXX

Exercise 1.175. ?? Combining the preceding two exercises, find the number of smooth
conics tangent to each of five general curves Di � P2.

Solution to Exercise ??: After the two preceding exercises, we only need to find the
intersection product of the classes ŒZDi

� D di .di � 1/˛ C diˇ. Calling �r the r th
symmetric function of the 5 numbers d1; : : : ; d5, that means,

�i D
X
jI jDr

Y
i2I

di

we have

deg
Y
i

.di .di � 1/˛ C diˇ/ D deg.
Y
i

di .
X
I

Y
i2I

.di � 1/˛
jI jˇ5�jI j// D

�5.�5 C �4 C �3 � 3�2 C 3�1/

that in fact agrees with what we already know about conics tangent to 5 lines (1) and
conics tangent to 5 conics (3264). For instance, we get that the number of conics tangent
to 5 general cubics is 168399.

Exercise 1.176. ?? Let D � P2 be a curve of degree d with ı simple nodes, � simple
cusps (for a definition of cusps, see Section ??) and smooth otherwise. Let Z � X be
the closure, in the space X of complete conics, of the locus of smooth conics tangent to
D at a smooth point of D. Find the class ŒZD� 2 A1.X/ of the cycle ZD .
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Solution to Exercise ??: It is easy to see that conics in ZD that we are adding when
taking the closure are conics through the nodes of the cusps of D that are tangent to the
branches (the single branch in case of the cusps). Let us find the class ŒZD� D u˛ C v�.
The coefficient u we need to find the intersection with a pencil of conics through 4
points; consider the normalization QD of D (that has genus g D

�
d�1
2

�
� ı � �) and the

pencil of conics induces a linear system of degree 2d. From Riemann-Hurwitz formula,
the number of singular elements of the series is 4d C 2g� 2 D d2C d � 2ı� 2�; there
will be a conic in the pencil through every node of D, but that will not give a singular
element in QD, because if the pencil is general it will not be tangent to any of the two
branches, so on QD it lifts to two reduced points on each point in the inverse image of
the node. There is a conic through every of the cusps of D, again that is not tangent to
the branch; this is going to be a ramification point for the system on QD (it is easy to see
in local coordinates that it is a simple ramification point); but, we do not want to count
these conics, because they are not in ZD; so, the number we need is

u D 4d C 2g � 2 � � D d2 C d � 2ı � 3�:

Note that this number is also the degree of the curve dual to D in P2�. To find the
coefficient v, it is d exactly as in Exercise ??. The class is then

ŒZD� D .d
2
C d � 2ı � 3�/˛ C d� D .d2 � d � 2ı � 3�/˛ C dˇ:

Exercise 1.177. ?? Let fDtg be a family of plane curves of degree d , with Dt smooth
for t ¤ 0 and D0 having a node at a point p. What is the limit of the cycles ZDt

as
t ! 0?

Solution to Exercise ??: For t ¤ 0, cycles ZDt
can be defined as the set of conics that

have a double point of intersection withDt ; this will hold also in the limit, so the support
of the limit will be contained in the set of conics that are either tangent toD0 at a smooth
point, or that pass through the node p, that means, ZD0

[ Ap; the multiplicities along
each of the two component can be checked using the fact that the total class has to be
the same as ŒZDt

� D d.d � 1/˛ C dˇ; so, using the previous exercise, the limit cycle
has multiplicity one on ZD0

and multiplicity two along Ap.

Exercise 1.178. ?? Here’s a very 19th century way of deriving the result of Exercise ??
above. Let fDtg be a pencil of plane curves of degree d , with Dt smooth for general t
and D0 consisting of the union of d general lines in the plane. Using the description of
the limit of the cycles ZDt

as t ! 0 in the preceding exercise, find the class of the cycle
ZDt

for t general.

Solution to Exercise ??: LetL1; : : : ; Ld be the lines composingD0, and p12; p13; : : : ; pd�1;d
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its nodes. Using the previous exercise, the cycle ZDt
degenerates to the union of cy-

cles BLi
with multiplicity one, and the cycles Apij

with multiplicity 2. Summing up
everything, we get

ŒZDt
� D 2

 
d

2

!
˛ C dˇ

as we found in Exercise ??.

Exercise 1.179. ?? True or False: There are only finitely many PGL4 orbits in the
Kontsevich space M 0.P3; 3/.

Solution to Exercise ??: False. Let us consider the most degenerate situation; as in the
case of plane conics, we consider three-to-one maps of a rational curve onto a line in P3;
such elements are completely determined by the image line L � P3 and the 4 branch
points on L; PGL4 acts on these configurations, but it cannot change the cross ratio
of the four points. There is still a one dimensional parameter that distinguish orbits, so
(unless we are dealing with a finite field) the statement is false.

Exercise 1.180. ?? Let �1 and �2 be collections of 3d1 � 1 and 3d2 � 1 general points
in P2, andDi � P2 any of the finitely many rational curves of degree di passing through
�i . Show that D1 and D2 intersect transversely.

Solution to Exercise ??: Let us consider the incidence correspondence

ˆ � .P2/.3d1�1/ � .P2/.3d2�1/ �M 0.P2; d1/ �M 0.P2; d1/ � P2 � P2�

where the elements

.�1; �2; C1; C2; p; L/

are in such a way Ci contains �i , p is one of the intersection points of C1 \ C2, and
L is the tangent line of both C1 and C2 at p. Let us find the dimension of ˆ, and see
that it has dimension smaller than .P2/.3d1�1/ � .P2/.3d2�1/ (that is 6d1 C 6d2 � 4
dimensional), so that for general �1 and �2 we do not have two tangent curves. Let us
start considering the image ‰ of ˆ onto M 0.P2; d1/ �M 0.P2; d1/ � P2 � P2�, by
projecting it again to the incidence correspondence „ 2 P2 � P2�. Every .p;L/ 2 „
imposes two conditions on curves in M 0.P2; di /, so fibers are 3di � 3 dimensional, so
‰ has dimension 3d1 C 3d3 � 3. Now, fibers of ˆ over ‰ are just choices of 3di � 1
points on the curves Ci , so dimension of fibers is 3d1 C 3d3 � 2, and the dimension of
ˆ is 6d1 C 6d2 � 5, that hence cannot dominate .P2/.3d1�1/ � .P2/.3d2�1/.

Exercise 1.181. ?? Let p1; : : : ; p7 2 P2 be general points and L � P2 a general line.
How many rational cubics pass through p1; : : : ; p7 and are tangent to L?

Solution to Exercise ??: Let us follow the discussion in Section ??; at first, we need to
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better study the cycle in M 0.P2; 3/ of cubics tangent to the line L; a couple of remarks:
this cycle does not include cubics whose singular point is on the line L (because it cannot
be smoothed out); then, a reducible element with a node p on L (and no further tangency
condition) is in the cycle if and only if p is also a node on the source curve. Then, in
the same way as in Section ??, we consider the curve B where we substitute one of the
condition of containing one of the points of � to the condition of being tangent to L;
we still have that curves in B break in at most two components (that can be only one
line and a conic in this case); then we can just follow the discussion; the only mayor
difference is that when the curve splits in two components, we have to both consider
the possibility of the conic being tangent to L, and the possibility of the node (the one
that is still a node in the source curve) lying on L, and one should remember that in the
former case the number of conics through 4 points and tangent to a line are 2. In the
end, the number is 48, and in fact it can be verified also in another way; inside the space
P9 of cubic curves in P2, we need to intersect the degree 12 hypersurface of singular
curves, the degree 4 hypersurface of curves tangent to a line, and 7 hyperplanes; the
first step is to prove that the intersection indeed happens on curves with at most one
nodal singularity (so that the intersection is the same as in M ), than using the explicit
description of tangent spaces (that follows from Proposition ?? and an argument as in
Exercise ??) it is possible to prove that they intersect transversely, so in 48 points.

Exercise 1.182. ??

(a) Let M D M 0.P2; d / be the Kontsevich space of rational plane curves of degree
d , and let U �M be the open set of immersions f W P1 ! P2 that are birational
onto their images. For D � P2 a smooth curve, let ZıD � U be the locus of maps
f W P1 ! P2 such that f .P1/ is tangent to D at a smooth point of f .P1/, and
ZD �M its closure. Verify the statement above: that is, show that ZD is contained
in the locus of maps f W C ! Pr such that the preimage f �1.D/ is nonreduced or
positive-dimensional.

(b) Given this, show that for D1; : : : ;D3d�1 general curves the intersection \ZDi
is

contained in U .

Solution to Exercise ??: It is easy to prove that the condition of f �1.D/ being nonre-
duced or positive-dimensional is a closed condition; the closure of ZD has then to be
contained in it. XXXASK SOMEONE Suppose now a stable map ff W C ! P2g is in
ZD but not in U ; this means that it has a rational component C0 � C that is contracted
to a point p in P2. In order for the map to be stable, we need C0 to meet at least 3
other components C1; C2; C3 of C , that map through f to curves of degree d1; d2; d3
with d1 C d2 C d3 � d . We know that f .C1/; f .C2/; f .C3/ have to pass to p, and
they need to be tangent to 3d � 3 curves (we can avoid two if we impose p to be the
intersection of two of the curves, not three because they are general). Note also that if
two of the curves f .Ci / intersect somewhere else than p along one of the curvesDi , the
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preimage will be two reduced points on the curves Ci unless one of the two curves in P2

is indeed tangent to the curve Di . So, we have cumulatively 3d conditions on the three
curves, but moduli spaces for curves of degrees d1; d2; d3 have cumulative dimension
3d1 C 3d2 C 3d3 � 3 that is smaller than the number of conditions, 3d , so such a curve
cannot exist. XXXCHECK AGAIN

1.9 Chapter 9
Exercise 1.183. ?? Choosing coordinates x0; x1; : : : ; xa on Pa to correspond to the
monomials sa; sa�1; : : : ; ta, show that the 2 � 2 minors of the matrix 

x0 x1 : : : xa�1

x1 x2 : : : xa

!
vanish identically on the rational normal curve S.a/. By working in local coordinates,
show that the ideal I generated by the minors defines the curve scheme theoretically.
Find a set of monomials that form a basis for the ring KŒx0; x1; : : : ; xa�=I , and show
that in degree d it has dimension ad C 1. By comparing this with the Hilbert function
of P1, prove that I is the saturated ideal of the rational normal curve.

Solution to Exercise ??: Plugging in coordinates s; t in the matrix, it has rank 1, so
all minors vanish on the curve. Let us prove that the 2 � 2 minors define the curve; it
is easy to check that it defines it set theoretically; to say that the curve is the scheme
cut out by these polynomials, we will prove that the vanishing locus has tangent space
of dimension one at every point of the curve. At the point Œ1; 0; : : : ; 0�, the equations
x0xiC1� x1xi say that the tangent space to the vanishing locus is where the coordinates
x2; : : : ; xn vanish, that means, a line. At the point Œsa; sa�1t; : : : ; ta� with t ¤ 0, we
slightly change the matrix into 

x0 x1 : : : xa�1

sx1 � tx0 sx2 � tx1 : : : sxa � txa�1

!
that has rank 1 if and only if the previous one has, so that the minors generate the same
ideal; now, if we consider t times the minor given by the columns i and i C 1, we get

txi�1.sxiC1 � txi / � txi .sxi � txi�1/ D 0

xi .t
2xi�1 � 2stxi C s

2xiC1/ � .sxiC1 � txi /.sxi � txi�1/ D 0

that proves that the tangent space is the vanishing locus of the linear forms t2xi�1 �
2stxi C s

2xiC1 as i varies from 1 to a � 1, that means a line. For the last part of the
problem, a basis for the coordinate ring can be given by all monomials xei x

f
iC1, that
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it is easy to see are all independent modulo I , and together with I generate the entire
KŒx0; x1; : : : ; xa�; in degree d there is in fact ad C 1 of them, so that I is in fact the
saturated ideal of the curve.

Exercise 1.184. ?? In order to do the same as we did in the previous exercise for surface
scrolls, prove that the Hilbert polynomial fS .d/ of the surface scroll S.a; b/ � PaCbC1

satisfies

fS .d/ � .aC b/

 
d C 1

2

!
C d C 1:

Solution to Exercise ??: We know that the intersection of S with a general hyperplane
H is a rational normal curve C of degree aC b; this is because it intersect every fiber of
the scroll once, hence is rational, has degree aC b because that is the degree of S , and
it is nondegenerate because H is general. Then, calling fS .d/ and fC .d/ the Hilbert
functions of respectively S and C , we have the inequality

fS .d/ � fS .d � 1/ � fC .d/

that comes from the sequence

0! kŒx0; : : : ; xaCbC1�=IS
hD�H
����! kŒx0; : : : ; xaCbC1�=IS

p
�! kŒx0; : : : ; xaCbC1�=IC

where h is injective and p ı h D 0. Then, we have fC .d/ D .aC b/d C 1, and from
the inequality above we get

fS .d/ �

dX
eD0

fC .e/ D .aC b/

 
d C 1

2

!
C d C 1

as requested. Note that using the same argument it is possible to prove that surface scrolls
are nondegenerate surfaces with minimal Hilbert function; for curves, the same is true
for rational normal curves.

Exercise 1.185. ?? Let x0; : : : ; xaCbC1 be coordinates in PaCbC1. Prove that the 2� 2
minors of the matrix 

x0 x1 : : : xa�1 xaC1 xaC2 : : : xaCb
x1 x2 : : : xa xaC2 xaC3 : : : xaCbC1

!
vanish on a surface scroll S.a; b/. As in Exercise ??, show that the ideal I generated by
the minors defines the surface scheme theoretically. Then, using Exercise ??, prove that
I is the saturated ideal of the surface scroll.

Solution to Exercise ??: Solving the equations of the minors, it is easy to see that set
theoretically the vanishing locus is the union of the lines

LŒs;t� D Œs
a; sa�1t; : : : ; ta; 0; : : : ; 0�; Œ0; : : : ; 0; sb; sb�1t; : : : ; tb�
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so it is a surface scroll; it is composed of lines joining two rational normal curves of
degree a and b, so it is of type S.a; b/. Using an argument as in Exercise ??, it is possible
to prove that the tangent space of the vanishing locus of the minors has a 2 dimensional
tangent space, so that it is S.a; b/ also scheme theoretically. A basis of monomials for
KŒx0; x1; : : : ; xaCbC1�=I is the set of all monomials of the kind xei x

f
iC1x

g
aC1 where

0 � i � a or of the kind xeax
f
j x

g
jC1 where a � j � aC b; it is not hard to prove that

they are a basis for the coordinate ring, and that there is exactly .aC b/
�
dC1
2

�
C d C 1

many of them. This proves that the ideal is saturated, and that in fact the inequality of
the previous exercise is an equality.

Exercise 1.186. ?? Let X be a smooth projective variety, E a vector bundle on X and
PE its projectivization. Let L be any line bundle on X ; as we’ve seen, there is a natural
isomorphism PE Š P.E ˝ L/.

(a) How does the class c1.OP.E˝L/.1// relate to c1.OPE .1//?
(b) Using the results of Section ??, show that the two descriptions of the Chow ring of

PE D P.E ˝ L/ agree.

Solution to Exercise ??: We have OP.E˝L/.�1/ sitting inside ��.E˝L/ as tautolog-
ical bundle; this means that it is equal to OP.E/.�1/˝ �

�L; dualizing, we get

c1.OP.E˝L/.1// D c1.OPE .1// � �
�c1.L/:

Let us give names: let us denote by �0 and �1 the two classes c1.OPE .1// and c1.OP.E˝L/.1//

, and by � the class ��c1.L/; then, let us call c1; : : : ; crC1 the (pullbacks of) Chern
classes of E. Now, the Chow ring of P.E/ is

A�.P.E// D A�.X/Œ�0�=.�rC10 C c1�
r
0 C : : :C crC1/

using � D �0 C � that proved above, we get

A�.P.E// D A�.X/Œ�1�=.�rC11 C .c1 C .r C 1/�/�
r
1 C : : :C .�

rC1
C : : :C crC1//

and as coefficients of �i1 we find, as from Section ??, Chern classes of E ˝ L; so the
two descriptions of the Chow ring agree.

Exercise 1.187. ?? Let � W Y ! X be a projective bundle.

(a) Show that the direct sum decomposition of the group A.X/ given in Theorem ??
depends on the choice of vector bundle E with Y Š PE .

(b) Show that if we define group homomorphisms  i W A.Y /! A.X/˚iC1 by

 i W ˛ 7!
�
��.˛/; ��.�˛/; : : : ; ��.�

i˛/
�

then the filtration of A.Y / given by

A.Y / � Ker. 0/ � Ker. 1/ � � � � � Ker. r�1/ � Ker. r/ D 0
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is independent of the choice of E . (Hint: give a geometric characterization of the
cycles in each subspace of A.Y /.)

Solution to Exercise ??: The very definition of the direct sum decomposition relies
on �, that depends on the choice of E. The coordinates for this decomposition are the
coefficients of powers of �, and the automorphism sending � to �0C� (that we have seen
in the previous exercise happens when we change the representative E) will of course
not keep the decomposition, because it does not act diagonally; under this point of view,
it acts as an upper triangular transformation (it is possible to prove (b) using this fact,
but we will use the hint instead). For part (b), remember that ��.˛/ D 0 if and only if
� on ˛ has positive dimensional fibers; so, �.˛/ D : : : D ��.�

i˛/ D 0 if and only if
� on ˛ has fibers of dimension > i (because � is generically an hyperplane section of
fibers); this gives a characterization of Ker. i / that does not depend on �, and hence on
the representative E.

meetsin this way, it is easy to see that Ker. i / is composed by all cycles whose
intersection

Exercise 1.188. ?? Show that the product of a base point free linear series with a very
ample linear series is very ample. (Hint: prove that the product separates points and
tangent vectors.)

Solution to Exercise ??: This is a simple application of Lemma ??, where we take �
to be the identity; in fact, being relatively ample for the identity map is the same as being
base point free.

Exercise 1.189. ?? Let F be a vector bundle of rank r on a scheme X . Prove that F is
very ample if and only if, for exach finite subscheme Y � X of length 2 we have

dimH 0.F.�Y // � dimH 0.F/ � 2r; (in which case equality holds),

where H 0.F.�Y // denotes the space of sections of F that vanish on Y (the section of
the kernel of the map F ! F=IY=XF .

Solution to Exercise ??: Let E D F�, and let � W PE ! X be the projection. Since
every subscheme of length 2 in P.E/ is contained in the preimage ��1Y D P.E jY / of
some subscheme Y of length 2, the complete linear series jOPE.1/j is very ample if
and only if its restriction to such preimages is very ample. Since every vector bundle
on a finite scheme is trivial we have H 0.F jY / D OrY , so PEY D Y � Pr�1, and the
restriction of OPE.1/ to this scheme is OY �OPr�1.1/.

The complete linear series jOY �OPr�1.1/j is very ample(for example by Proposi-
tion ?? where we take both L and F to be trivial bundles), and has dimension 2r . Thus
dimH 0.F.�Y // � dimH 0.F/ � 2r if and only if the map H 0.F/ ! H 0.F jY / is
surjective (in which case the inequality is an equality.) It thus suffices to show that no
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linear series of the form OY � OPr�1.1/;W , with W ¨ H 0OY � OPr�1.1/, can be
very ample on Y � Pr�1. Equivalently: there is no embedding of Y � Pr�1 in P2r�2

taking Yred � Pr�1 to the disjoint union of (one or two) linear spaces.

Suppose, on the contrary, there were such an embedding. Since we assume that
the ground field K is algebraically closed, there are only two possibilities for Y : two
reduced points or one double point. If Y consists of two reduced points, so that the image
of Yred � Pr�1 is the union of two linear spaces, we get a contradiction simply from the
fact that any two r � 1-dimensional varieties in Pr meet.

On the other hand, if Y is a double point, Y D SpecKŒ��=.�2/, then the normal
bundle of Yred is Y is trivial, and thus the normal bundle of Yred � Pr�1 in Y � Pr�1 is
trivial. This bundle is a subbundle of the normal bundle of the linear space Yred � Pr�1

in P2r�2, so the top Chern class of this bundle is trivial. However, this normal bundle is
isomorphic to O.1/r�2, and the degree of its top Chern class is actually 1, contradicting
the existence of the embedding. (We could state this argument without mentioning Chern
classes: the content is that any r � 2 linear forms on Pr�1 have a common zero.)

Exercise 1.190 (Vector Bundles on Elliptic Curves). ?? We will apply the criterion of
Exercise ?? to prove the existence of certain embeddings of a scroll over an elliptic curve
in Exercise ??. To do this we need some facts about vector bundles on an elliptic curve
from the rather complete theory of ?]. We invite the reader to prove what we will need:

(a) Show that there is a unique indecomposable vectore bundle E WD E.2;L/ of rank
2 on the genus 1 curve C with given determinant L WD ^2E of degree 1, and that
there is a short exact sequence

0! OC ! E ! L! 0:

Similarly, show that there is a unique indecomposable rank 2 bundle with determi-
nant OC .

(b) Deduce that there is a unique indecomposable bundle E.2;L/ of rank 2 with any
given determinant L, and that for any line bundle L0 of degree bdegL=2c there is
an exact sequence

0! L0 ! E.2;L/! L˝ L0�1 ! 0:

If d > 0 then h0E.2;L/ D d and h1E.2;L/ D 0.

Solution to Exercise ??: (a) Since Ext1.L;OC / D H 1.L�1/ is 1-dimensional, there
is an extension of the form given, and the bundle E in the middle is unique up to
isomorphism. We define E.2;L/ to be this bundle.

Suppose that E.2;L/ were decomposable; say E.2;L/ D L0 ˚ L00, with L D
L0 ˝ L00. Since degL0 C degL00 D 1, at least one of the two bundles has degree
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� 1; suppose this is true of L0. From the exact sequence defining E.2;L/ we get an
exact sequence

0! Hom.L0;OC /! Hom.L0; E.2;L//! Hom.L0;L/! � � � :

The first term vanishes for degree reasons, so the inclusion map induces a nonzero
homomorphism L0 ! L. Since degL0 � degL it follows that L0 Š L. But this
implies that the sequence defining E.2;L/ is split, a contradiction.

Conversely, given an indecomposable rank 2 bundle E with determinant L of
degree 1, The Riemann-Roch formula for vector bundles on a curve gives

h0E � h1E D deg E � .rank E/.1 � g/ D 1;

so E has at least one global section, � . Let L0 be the preimage in E of the torsion in
E=OC� . Since both L00 WD E=L0 and L0 are torsion free, they are line bundles on
C , and we have a short exact sequence

0! L0 ! E ! L00 ! 0:

Taking determinants, we see that L00 D L˝ L0�1. Since H 0L0 contains the section
� , we have degL0 � 0, and degL00 D degL � degL0 D 1 � degL0. Since we
supposed E indecomposable, it follows that the sequence above is not split; that is,

Ext1.L0;L00/ D H 1.L0 ˝ L0�1/ ¤ 0:

Since the degree of L0 ˝ L0�1 is degL0 � .1 � degL0/ D 2 degL0 � 1, we must
have degL0 D 0, so L0 D OC and L00 D L as required. Thus E = E.2;L/.

(b) Let L0 be a bundle of degree e, and set L0 D L˝ L0�2, a bundle of degree 1. Set
E.2; d/ D L0 ˝ E.2;L0/, which is indecomposable, has rank 2 and determinant
L. Given any other such bundle, the tensor product with L0�1 would give another
indecomposable bundle of rank 2 and determinant L0; since we have shown that
such a bundle is unique up to isomorphism, it follows that E.2;L/ is the only
indecomposable bundle with this rank and determinant. From the definitions there
is a short exact sequence

0! L0 ! E.2;L/! L˝ L0�1 ! 0:

In case d � 2 the values for the hiE.2;L/ follow at once from the associated long
exact sequence, using H 1L0 D 0 D H 1L ˝ L0�1. If d D 1 the we tensor the
defining sequence for E.2;L/ with a nontrivial line bundle of degree 0 to get a
sequence

0! L0 ! E.2;L/! L˝ L0�1 ! 0:

Since H 0L0 D 0 D H 1L0, the desired result follows at once from the long exact
sequence. (Using similar ideas, one can show that h0.E.2;L/ D h1.E.2;L// D 1
when L has degree 0.)
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Exercise 1.191 (Elliptic Scrolls). ?? Let L be a line bundle of degree d on an elliptic
curve C , and let E D E.2;L/�. Show that OPE.1/ is very ample if and only if d � 5. In
particular, taking d D 5, deduce that there is an embedding of PE in P4 as a smooth
surface of degree 5, an elliptic quintic scroll. (Hint: If d � 5 then for every divisor D of
degree 2 on C , we have h0.E.2;L/.�D// D d � 2 � rank E D d � 4 by Exercise ??,
so we can use the criterion of Exercise ??. On the other hand, if d D 4 or less then there
is some line bundle of degree 2 such that h0.E.2;L/.�D// ¤ d � 4.

One can decompose such a surface geometrically as follows. From Exercise ?? it
follows that every line bundle of degree -3 can be embedded in E , and gives rise to a
section of the scroll. Since deg E D 5 D 3C3�1, any two of these sections, sayX1; X2
meet in a single point p, and in fact lie in planes in P4 that meet only at p. The scroll
S is the closure of the union of the lines connecting corresponding points of these two
sections other than p. For more information see ?] and ?].

The elliptic quintic scrolls are closely related to the Horrocks-Mumford bundle on
P4; see for example ?]. The homogeneous coordinate rings of the scrolls are normal
domains, and even nonsingular in codimension 2, but not Cohen-Macaulay (because H 1

of their structure sheaves is nonzero); in many ways they are the simplest examples of
such rings.

Solution to Exercise ??: By Exercise ??, as soon as d � 5, for every Y scheme of
degree 2 we have h0.E.2;L/.�D// D d � 4 and h0.E.2;L// D d that proves the
very ampleness. So, for d D 5, the embedding from the linear series jOP.E/.1/j is
an embedding as a surface (of degree 5) in P4, ruled by lines over an elliptic curve
basis.

Exercise 1.192. ?? In Example ?? we used intersection theory to show that there does
not a exist a rational solution to the general quadratic polynomial, that is, there do not
exist rational functions X.a; : : : ; f /, Y.a; : : : ; f / and Z.a; : : : ; f / such that

aX2 C bY 2 C cZ2 C dXY C eXZ C f YZ � 0:

To gain some appreciation of the usefulness of intersection theory, give an elementary
proof of this assertion.

Solution to Exercise ??: Suppose there exist a rational section f W P5� ! P2 � P5,
and let us take its restriction on the P2 given by d D e D f D 0. It is possible that f
is not defined at all on this P2; if this is the case, we can make a coordinate change on
X; Y and Z (and correspondingly on a; b; c; d; e; f ) in such a way this does not happen
anymore; it is important to notice that this is true because the net aX2 C bY 2 C cZ2

sweeps out the whole P5 under changes of coordinates. Clearing denominators, we can
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assume X; Y;Z to be homogeneous polynomials in a; b; c without common factors, so
we need to find polynomials satisfying

aX.a; b; c/2 C bY.a; b; c/2 C cZ.a; b; c/2 D 0:

Setting c D 0, we get the equation aX.a; b; 0/2 C bY.a; b; 0/2 D 0; comparing parity
of roots, we get X.a; b; 0/ D Y.a; b; 0/ D 0, that means c is a factor of X and Y ; in the
same way, we get that X is a multiple of bc, Y is a multile of ac, and Z a multiple of
ab. Putting all together in our equation, we get

ab2c2
�
X.a; b; c/

bc

�2
C a2bc2

�
Y.a; b; c/

ac

�2
C a2b2c

�
Z.a; b; c/

ab

�2
D 0;

that in turn proves that a is a factor of X , but this is impossible because a is already a
factor of Y and Z, and they were coprime polynomials.

Exercise 1.193. ?? Let

ˆ D
˚
.L; p/ 2 G.1; n/ � Pn jp 2 L

	
be the universal line in Pn, and let �1, �1;1 and � be the pullbacks of the Schubert
classes �1 2 A1.G.1; n//, �1;1 2 A2.G.1; n// and the hyperplane class � 2 A1.Pn/
respectively. Find the degree of all monomials �a1 �

b
1;1�

c of top degree a C 2b C c D
dim.ˆ/ D 2n � 1.

Solution to Exercise ??: We can look at ˆ as P.S/ on G.1; n/; with this identification,
we have � D c1.OP.S/.1//, because an hyperplane section of Pn can be seen as a section
of S� on G.1; 3/. In this way, we get the relation

�2 D ��1 � �1;1:

Iterating this formula (by induction), we get

�c D �c�1� � �c�1;1

Now, top degree classes where � do not appear are going to be zero, because they are on
G.1; n/. Then whenever � is a zero dimensional class on G.1; 3/, we of course going to
have

degˆ.��/ D degG.1;n/.�/

Collecting everything, we get

degˆ.�
a
1 �

b
1;1�

c/ D degG.1;n/.�
a
1 �

b
1;1�c�1/

that moves the problem to a completely combinatoric one involving only the Chow ring
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of G.1; n/; it can be solved for instance using the hook formula (see Exercise ??) from
which we get

degˆ.�
a
1 �

b
1;1�

c/ D
1

aC 1

 
aC 1

n � 1 � b

!
if a � c � 1 � 0, and zero otherwise.

Exercise 1.194. ?? Consider the flag variety of pairs consisting of a point p 2 P3 and a
line L � P3 containing p; that is,

F D f.p;L/ 2 P3 �G.1; 3/ j p 2 L � P3g:

F may be viewed as a P1-bundle over G.1; 3/, or as a P2-bundle over P3. Calculate the
Chow ring A.F/ via each map, and show that the two descriptions agree.

Solution to Exercise ??: We have F D PG1;3
.S/, so that we get

A � .F/ D A � .G.1; 3//Œ�0�=.�20 � �1�0 C �1;1/:

On P3 (with hyperplane class �), the space F can be seen as P.Q/; we then have

A � .F/ D A � .P3/Œ�1�=.�31 C ��
2
1 C �

2�1 C �
3/:

We can see that this two are isomorphic by a ring morphism sending �0 to � (they both
represent the class of flag with the point belonging to an hyperplane) and �1 to �1 C �
(they both are the classes of flags where the line meets a given line).

Exercise 1.195. ?? By Theorem ??, the Chow ring of the product P3 �G.1; 3/ is just
the tensor product of their Chow rings; that is

A.P3 �G.1; 3// D A.G.1; 3//Œ��=.�4/:

In these terms, find the class of the flag variety F � P3 �G.1; 3/ of Exercise ??.

Solution to Exercise ??: The class is codimension 2, so its class is going to be of the
form

ŒF� D ˛�2 C ˇ��1 C 
�2 C ı�1;1:

To find coefficients, we need to intersect with dual classes (respectively) �2�2;2, �3�2;1,
�4�2, �4�1;1. A cycle in the class �2�2;2 is composed by couples where the line is fixed
and the point is in a general plane, so that we have 1 point of F, that means, ˛ D 1. A
cycle in the class �3�2;1 has lines in a general pencil (contained in a plane and through a
fixed point) and the point in a general line, that gives ˇ D 1. A cycle in the class �4�2
has lines through a general point and the point fixed, that gives 
 D 1. A cycle in the
class �4�1;1 has lines contained in a general plane and the point fixed, that gives ı D 0.
The class is then

ŒF� D �2 C ��1 C �2:
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This can be seen also from the fact that this arises as the vanishing locus of the tautologi-
cal morphism of vector bundles ��1OP3.�1/! ��2Q, that means, as vanishing locus of
a section of the vector bundle ��1OP3.1/˝ ��2Q, whose second Chern class is the one
above. Check of transversality can be made through Kleiman’s transversality theorem,
or by an explicit evaluation of tangent spaces.

Exercise 1.196. ?? Generalizing the preceding problem, let

F.0; k; r/ D f.p;ƒ/ 2 Pr �G.k; r/ j p 2 ƒ � Prg:

Find the class of F.0; 1; r/ � Pr �G.k; r/.

Solution to Exercise ??: As in the previous exercise, given that F.0; k; r/ has codimen-
sion k � r in Pr �G.k; r/, we have

ŒF� D
X

iCj�jDk�r

˛��
i��

and we can find the coefficient ˛� intersecting with the dual class �r�i��� , that means,
the k plane is in a ��� cycle, and the point in a Pi ; we need then to know how many
planes in a cycle ��� intersect a general Pi , that is the same as the degree of ����r�k�i ,
that is ����j�j. Note that this cycle has the right codimension, and it is nonzero if and
only if �� is �� (that means, only if the Young diagram has only one row). This gives us

ŒF� D
r�kX
jD0

�r�k�j�j

that again could be recovered as section of the vector bundle ��1OPr .1/˝ ��2Q whose
top Chern class is the above.

Exercise 1.197. ?? Generalizing Exercise ?? in a different direction, let

ˆr D f.L;M/ 2 G.1; r/ �G.1; r/ j L \M ¤ ¿g:

Given that, by Theorem ?? we have

A
�
G.1; r/ �G.1; r/

�
Š A

�
G.1; r/

�
˝ A

�
G.1; r/

�
;

find the class of ˆr in A
�
G.1; r/ �G.1; r/

�
(a) r D 3;
(b) r D 4; and
(c) for general r .

Solution to Exercise ??: For n D 3, the codimension of ˆ3 is one, so it will be a linear
combination of �1 and � 01; to find the coefficients, we need to intersect with a pencil
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�2;1�
0
2;2 of couples with the first line in a pencil, the second line fixed: this intersects

ˆ3 once, so that we get

Œˆ3� D �1 C �
0
1:

For n D 4, the codimension is two, so that we have classes �2, �1;1, �1� 01,� 02 and � 01;1.
It is easy to check, again intersecting with dual cycles, that coefficients of �2 and � 02
are 1, and coefficients of �1;1 and � 01;1 are 0. To find the coefficient of �1� 01, we need
to intersect with the class �2;1� 02;1, that means, couples of lines where both are free to
move in a pencil; the two planes these pencils span will intersect in one point, so we get
one element of ˆ4 here as well. We then got

Œˆ4� D �2 C �1�
0
1 C �

0
2:

In the general case, ˆr will have codimension r � 2 in G.1; r/ �G.1; r/; the class will
be of the kind

Œˆr � D
X

j�jCj�0jDr�2

˛�;�0���
0
�0 :

To find coefficients we need to intersect with classes ���� 0.�0/�; in order for this class to
meet ˆr , we need the total space that lines in a general ��� cycle span too meet the total
space of lines in a general � 0

.�0/�
cycle. Counting dimensions, this happens if and only if

both Young diagrams � and �0 have only one row, and in that case it is immediate to see
that the coefficient is one. We then get

Œˆr � D
X

iCjDr�2

�i�
0
j :

This classes are also related to vector bundles; in particular, considering the tautological
vector bundle morphism ��1S ! ��2Q, this is the locus where this morphism fails to
have rank 2 (not the same thing as the vanishing locus!). The technique to deal with this
kind of problems will be the main content of Chapter ??, and we will solve this problem
again in Exercise ??.

Exercise 1.198. ?? Let Z be the blowup of Pn along an .r � 1/-plane, and let E � Z
be the exceptional divisor. Find the degree of the top power en 2 A.Z/.

Solution to Exercise ??: Following notation in Corollary ??, we need to find the degree
of .� � ˛/n. Using the equalities in Corollary ??, we get that the degree of �i˛n�i is
zero whenever r � i C 1, and 1 otherwise. We then get as degree

1 � nC

 
n

2

!
� : : :C .�1/n�r

 
n

n � r

!

that for instance agrees with -1 in the case of a point in P2.



Chapter 9 Section 1.9 103

Exercise 1.199. ?? Again let Z D BlƒPn be the blowup of Pn along an .r � 1/-plane
ƒ. In terms of the description of the Chow ring of Z given in Corollary ??, find the
classes of the following:

(a) the proper transform of a linear space Ps containing ƒ, for each s > r ;
(b) the proper transform of a linear space Ps in general position with respect to ƒ (that

is, disjoint from ƒ if s � n � r ; and transverse to ƒ if s > n � r); and
(c) in general, the proper transform of a linear space Ps intersecting ƒ is an l-plane.

Solution to Exercise ??: Remember that the class � is the class of an hyperplane in
Pn that is transverse to ƒ, and ˛ is the class of the proper transform of an hyperplane
containig ƒ; for the first point, such Ps is obtained as transverse intersection of n � s
proper transforms of hyperplanes containing ƒ; the class is then ˛n�s . In the second
case, for the same reason the class is �n�s . In the third case, the class will be

�r�1�l˛n�s�.r�1�l/

because such a Ps is the intersection of r � 1 � l hyperplanes of type � (that decrease
the dimension of the intersection with ƒ down to l) and n� s � .r � 1� l/ hyperplanes
of type ˛.

Exercise 1.200. ?? Let Z D BlLP3 be the blowup of P3 along a line. In terms of the
description of the Chow ring of Z given in Corollary ??, find the classes of the proper
transform of a smooth surface S � P3 of degree d containing L.

Solution to Exercise ??: The class of the proper transform QS will be of the kind u� C
v˛; to find the coefficients u and v, we need to intersect with dual classes �˛ and �2��˛,
respectively of the proper transform of a line meeting L in a point, and of a fiber of E
over a point of L. In the first case the intersection is d �1 points, because the (transverse)
point of intersection of S and the cycle along L goes away in the blow up; for the second
intersection, S is smooth along L, so locally around L the surface S will look like the
embedding

NL=S ,! NL=P3

that when we go to the projectivization it will look like a curve in P1 � P1, meeting
every fiber once. So, collecting everything, we get

Œ QS� D .d � 1/� C ˛ D d� �E

that could be found also observing that the pullback of S contains the exceptional divisor
with multiplicity 1.

Exercise 1.201. ?? Now let Z D BlLP4 be the blowup of P4 along a line, and let
S � P4 be a smooth surface of degree d containing L. Show by example that the class
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of the proper transform of S in Z is not determined by this data. For example, try taking
S a cubic scroll, with L either

(a) a line of the ruling of S ; or
(b) the directrix of S

and seeing that you get different answers.

Solution to Exercise ??: The class we are looking for will be of the kind

Œ QS� D u�2 C v�˛ C w˛2:

To find the coefficients, we will need to intersect with dual classes; remembering that
degrees of ˛4 and �˛3 are zero, and the degrees of �2˛2; �3˛ and �4 is one, we get that
dual classes are (respectively) ˛2; �˛ � ˛2 and �2 � �˛. The class ˛2 is the class of the
proper transform of a P2 containing L; intersection with QS will happen only outside
the exceptional divisor E, hence the intersection number (and so u) will be the number
of points of intersection between S and a plane containing L away from L. The class
�˛�˛2 D ˛ �E is the intersection of the exceptional divisor and of the proper transform
of an hyperplane containing L; so, we consider the intersection of S and an hyperplane
H containing L (that will be a curve C together with L itself), and then we consider the
proper transform QC of C in BlLH , and in particular in how many points QC intersects
the exceptional divisor; this goes back just to the number of times C and L intersect,
that will be the coefficient v. Similarly, the class �2 � �˛ D � �E is the intersection of a
general hyperplane, and the exceptional divisor; we consider then the intersection D of
S with a general hyperplaneH (that intersects L at a point p, that belongs toD too) and
we ask for the intersection of the proper transform QD of D in BlpH and the exceptional
divisor; this number (and hence, w) is always 1, as soon as S is smooth along L.

In the first example, a general hyperplane section of S containing the directrix is L
together with two lines M1 and M2 of the ruling, each meeting L at one point; we then
immediately get v D 2. Intersecting with another plane containing L, the intersection
will be only supported at L, so we get u D 0: we then get

Œ QS� D 2�˛ C ˛2:

In the second example, the intersection with a general hyperplane containing L will
contain also a conic C touching every line of the ruling (hence, L) once; this will give
us v D 1 and, intersecting with another hyperplane containing L we get one intersection
point outside L, that means,

Œ QS� D �2 C �˛ C ˛2:

The class then does not depend only on the degree of d . More specificly, suppose we
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have NL=S D OL.e/; calling H the hyperplane section on S , we have deg.L2/ D e,
deg.L �H/ D 1 and of course deg.H 2/ D d . Remembering that C D H � L, we get

v D L � C D L � .H � L/ D 1 � e

u D C � C D .H � L/2 D d � 2C e

that in fact agrees with out previous examples, in which, respectively, e D �1 and e D 0
(note that the sum of the three coefficients is always d ).

Exercise 1.202. ?? Let Z D BlƒPn be the blowup of Pn along an .r � 1/-plane ƒ;
that is, if we consider the subspace Pn�r � G.r; n/ of r-planes containing ƒ, we have

Z D f.p; �/ 2 Pn � Pn�r jp 2 �g:

Using the description of the Chow ring of Z given in Corollary ??, find the class of
Z � Pn � Pn�r .

Solution to Exercise ??: The variety Z is just the universal hyperplane over the subva-
riety Pn�r of G.r; n/; calling � the hyperplane class in Pn, and � the hyperplane class
on Pn�r ; the class of Z will be of the form

ŒZ� D c0�
n�r
C c1�

n�r�1� C : : :C cc�r�
n�r ;

and it is easy to see intersecting with a dual basis for An�k.Pn � Pn�r/ that all coeffi-
cients ci are equal to 1 (trasversality will come from Kleiman’s theorem).

Exercise 1.203. ?? Let F and G be two general polynomials of degree 3 in P2, and let
fCtgP1 be the associated pencil of curves; let p1; p2; : : : ; p9 be the basepoints of these
pencil. Show that for very general t 2 P1 (that is, for all but countably many t ), the line
bundle OCt

.p1 � p2/ is not torsion in Pic.Ct / D A1.Ct /.

Solution to Exercise ??: Consider the total space � W S ! P1 of the pencil, that is
the blow-up of P2 at the 9 points p1; : : : ; p9, and let let E1; : : : ; E9 be the exceptional
divisors. For a given n, consider the line bundle Ln D OS .nE1 � nE2/; if p1 � p2 is
torsion of order n on every curve of the pencil, then the line bundle Ln is isomorphic
to OS on every fiber; using Corollary ?? (b), this means that Ln D ��OP1.d/; but on
P ic.S/, this gives the equality

nE1 � nE2 D d.3H �E1 � : : : �E9/

because the pullback of one point of P1 is a fiber, that means the proper transform of a
cubic through the 9 base point. This cannot be true for any d and n, because H and all
the Ei are linearly independent; hence, for every n the the divisor p1 � p2 is torsion of
order n for finitely many curves; hence, outside of a countable set of fibers p1 � p2 is
not torsion.
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Exercise 1.204. ?? Now let S be the blow-up of the plane at the points p1; : : : ; p9—that
is, the graph of the rational map P2 ! P1 given by .F;G/—and let E1; : : : ; E9 be
the exceptional divisors. Show that there is a biregular automorphism ' W S ! S that
commutes with the projection S ! P1 and carries E1 to E2.

Solution to Exercise ??: On the surface S , consider the two linear systems 3H �E1�
: : : �E9 (the one of the fibers for the map to P1) and H �E1, of proper transforms of
lines through p1. Together, they give a map S ! P1 � P1; this is a branched double
cover: in fact, if we fix a line through p1 and one of the curves of the pencil, there
are going to be two points in the intersection, besides p1. So, we can consider the
involution '1 of S exchanging the two branches (hence, keeping curves of the pencil
fixed). Consider also the involution '2, obtained in the same way using the system
H �E2 and the point p2, and let us call ' the composition '2 ı '1. Let us prove that
this is the involution we want: if r 2 S (suppose it lies on a smooth curve of the pencil),
we have rCp1C'1.r/ D 0 by the group law on the curve, and '1.r/Cp2C'.r/ D 0.
Collecting everything, we get

'.r/ D r C p2 � p1

that holds on a dense subset, hence everywhere; this proves it carries E1 to E2.

Exercise 1.205. ?? Using the result of Exercise ??, show that the automorphism ' of
Exercise ?? has infinite order, and deduce that the surface S contains infinitely many
irreducible curves of negative self-intersection.

Solution to Exercise ??: Let us consider the curve E1, and the images 'n.E1/ by the
map in the previous exercise; as much as E1, all curves 'n.E1/ will be curves with
self intersection -1, and they will intersect every fiber in one reduced point (because '
commutes with the projection onto P1). Then, ' is an automorphism, so if 'n.E1/ D
'm.E1/ for n > m, then 'n�m.E1/ D E1; but we cannot have 'n�m.E1/ D E1,
because of Exercise ??, so in the end all curves 'n.E1/ are distinct, and this proves the
claim.

Exercise 1.206. ?? An amusing enumerative problem: in the circumstances of the
preceding exercises, for how many t 2 P1 will it be the case that OCt

.p1 � p2/ is
torsion of order 2—that is, that OCt

.2p1/ Š OCt
.2p2/?

Solution to Exercise ??: Consider the intersection E1 \ '2.E1/; this will correspond
to fibers where p1 D p1 C 2.p2 � p1/, that means where 2p1 D 2p2. So, we have to
understand what divisor is '2.E1/ D '.E2/, and in order to do this we will understand
how ' acts on the Picard group of S . Remember that ' D '1 ı '2, so let us start with
'1. Remember that '1 exchanges points on lines through p1 that lie on the same cubic
curve of the pencil. On the exceptional divisors Ei with i ¤ 1, the image will be the line
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'1.Ei / D H �E1 �Ei . About the exceptional curve E1, its image will be of the kind

'1.E1/ D aH � bE1 �

9X
i2

Ei

and imposing that the intersection with the image of Ei being zero, and self intersection
to be -1, we get '1.E1/ D 4H � 3E1 �

P
Ei . Doing the same for H , we get '1.H/ D

5H � 4E1 �
P
Ei . Formulas for '2 will be the same with E1 and E2 exchanged. So,

we get

'2.E1/ D '1'2'1'2.E1/ D '1'2'1.H �E1 �E2/ D

D '1'2.E2/ D '1.4H �E1 � 3E2 �

9X
iD3

Ei / D

D 6H � 3E1 �

9X
iD3

Ei

whose intersection with E1 gives 3, so that we have three fibers where the difference is
torsion of order 2. In this way it is also possible to find the number of points of torsion
of any order.

Exercise 1.207. ?? Let C be a smooth curve of genus g � 2 over a field of characteristic
p > 0; let ' W C ! C be the Frobenius morphism. If �n � C � C is the graph of 'n

and 
n D Œ�n� 2 A1.C � C/ its class, show that the self-intersection deg.
2n/! �1
as n!1.

Solution to Exercise ??: Remember that the Frobenius morphism ' is bijective on
closed points, but whose scheme theoretic fibers have degree p. To find the self-
intersection of the graph of 'n, we can use adjunction, that says

deg.K�n
/ D deg.Œ�n� � .KC�C C Œ�n�//

deg.Œ�n�2/ D 2g � 2 � deg.Œ�n� �KC�C / D 2g � 2 � deg.Œ�n� � .KC�0 CK0�C //

where we used that, of course, �n is a curve of genus g (because it is isomorphic to C
itself). To find the remaining part of the formula, the divisor KC�0 is 2g � 2 fibers, so it
will have intersection with �n equal to 2g� 2 (because �n is a graph); the divisorK0�C
is 2g � 2 fibers, so it will have intersection with �n equal to pn.2g � 2/ (because �n is
the graph of a morphism of degree pn). We then get

deg.Œ�n�2/ D �pn.2g � 2/

that goes to �1 as n increases.
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Exercise 1.208. ?? Show that if E is a vector bundle of rank 2 and degree e on a smooth
projective curve X , and L and M sub-line bundles of degrees a and b corresponding to
sections of PE with classes � and � , then

deg.��/ D e � a � b

and

deg.�2 C �2/ D 2e � 2a � 2b:

In particular, if L and M are distinct then deg �2 C deg �2 � 0, with equality holding if
and only if E D L˚M .

Solution to Exercise ??: Consider the vector bundles map L˚M
�
�! E given by the

direct sum of the two immersions; a point of intersection of � and � will be a point of
the curve X where the vector bundle map has rank 1 instead of two; that means, where

the map ^2.L ˚M/
^2�
��! ^2E, that is the same as the vanishing locus of a section

of ^2.L˚M/� ˝^2E, whose first Chern class has in fact degree e � a � b. For the
second equality, let us consider the sequence of morphisms

A�.X/
��

��! A�.PE/
��
��! A�.X/:

This is an exact sequence, because of Theorem ?? and Exercise ??; let us now consider
it only in one degree, namely

A1.X/
��

��! A1.PE/
��
��! A0.X/:

Consider the class � � � 2 A1.PE/: the general intersection with one fiber of PE is
zero, so ��.� � �/ D 0; but this means that � � � D ��˛ for ˛ 2 A1.X/, and hence
that .� � �/2 D 0. Using what we found out about �� , we get the desired

deg.�2 C �2/ D 2e � 2a � 2b:

Now, if � and � are distinct, their intersection will be zero-dimensional, hence the
intersection number must be positive; this proves e � a � b � 0, and hence deg �2 C
deg �2 � 0. In case of equality, � and � cannot intersect, and hence the mapL˚M

�
�! E

is an isomorphism of vector bundles.

Exercise 1.209. ?? Using the analysis of Example ?? as a template, show that for d > 1
the universal hypersurface

ˆd;n D f.X; p/ 2 PN � Pn jp 2 Xg ! PN

admits no rational section.

Solution to Exercise ??: Looking at the projection �2 W ˆ ! Pn, we can see that ˆ
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is a PN�1 bundle over Pn. Calling � the hyperplane class of Pn, and � the hyperplane
section of PN , we get

A�.ˆ/ D ZŒ�; ��=.�nC1; �N � p.�; �//:

In particular, this means that

An�1.ˆ/ D< �n�1; ��n�2; : : : ; �n�1 >Z :

Notice that if we intersect all these generators with the class of complementary dimension
�N , because of �NC1 D 0 we get zero for all �n�1�i�i with i > 0, and intersecting
with �n�1 we are asking, in a single hypersurface of degree d , how many points lie on a
line: the answer is then d . Basically, we proved that all codimension n � 1 classes in
ˆ have intersection with �N that is a multiple of d . Now, suppose we have a rational
section of the projection �1 W ˆ! PN ; taking the closure of the image in ˆ, this would
give a codimension n � 1 subvariety of ˆ, having intersection one with the general fiber
�N , and this is not possible.

Exercise 1.210. ?? Consider the flag variety of pairs consisting of a point p 2 P4 and a
2-plane ƒ � P4 containing p; that is,

F D f.p;L/ W p 2 ƒ � P4g � P4 �G.2; 4/:

F may be viewed as a P2-bundle over G.2; 4/, or as a G.1; 3/-bundle over P4. Calculate
the Chow ring A.F/ via each map, and show that the two descriptions agree.

Solution to Exercise ??: Over G.2; 4/, the variety F may be viewed as PS. Its Chow
ring is then

A�.F/ D A � .G.2; 4//Œ�0�=.�30 � �1�
2
0 C �1;1� � �1;1;1/:

Over P4, the variety F can be seen as G.2;Q/; using the description as in Theorem ??,
we get

A�.F/ D A�.P4/Œ�1; �2�=.�3��2�1C�.�21 � �2/C .��
3
1 C 2�1�2/; �

4
1 � 3�

2
1�2C �

2
2/:

And they are isomorphic by a ring morphism sending �0 to � (they both represent the
class of flags where the point belongs to an hyperplane) and �i to �i (they both represent
the class of flags where the plane intersect a P2�i ).

Exercise 1.211. ?? Show that the analog of Lemma ?? is false if we allow the Vi
to have codimension > 1: in other words, Vi � Epi

is a general linear subspace
of codimension mi , then the corresponding subspace W � H 0.E/ need not have
dimension maxf0; h0.E/ �

P
mig. (Hint: Consider a bundle whose sections all lie in a

proper subbundle.)
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Solution to Exercise ??: On the projective line P1, consider the vector bundle E D
O.2/˚ O, and let us impose the condition to lie in a codimension 2 subspace of the
fiber (that is, to vanish) at two point p and q; on the 4 dimensional space of sections

H 0.E/ Š H 0.O.2//˚H 0.O/

this imposes three conditions: in fact, the first coordinate has to be zero, and the second
has to be a polynomial vanishing at p and q (there is a one dimensional vector space
of such sections). So in this case W has not the expected dimension (that in this case is
0).

Exercise 1.212. ?? Calculate the remaining five intersection numbers in the table of
intersection numbers in Section ??.

Solution to Exercise ??: The class ! is the class of all conics contained in one of the
planes of a net (that means, all conics that are coplanar with a given fixed point); the
class 
 is of a pencil of conics contained in a fixed plane, so it will not intersect !; in the
class ', the plane varies in a pencil, so we are going to get one point of intersection. The
class � on a general fiber of the projective bundle is going to be an hyperplane, and the
class 
 is a pencil in a general fiber: the intersection is clearly one again. For the class ı
of conics meeting a line, the intersection with 
 will be the only conic through the point
of intersection of the line and the plane containing all conics of 
 ; the intersection with
' will be the two conics through the points of intersection of the line and the quadric
we are taking hyperplane sections of. To prove transversality, we need to explicitly find
tangent spaces; remember that the tangent space to H at a conic C is the vector space

H 0.NC=P3/ Š H 0.OP3.1/jC ˚OP3.2/jC / Š H
0.OC .2//˚H 0.OC .4//:

For ı, in the end, everything is carried on in Proposition ??, and proof of what follows
will be of the same kind. For 
 , the tangent space is the vector space 0˚ V where V is
the one dimensional subspace of polynomials vanishing at the four base points of the
pencil. For ', the tangent space is W ˚ 0, where W is the one dimensional subspace
of polynomials vanishing at the two base points of the pencil (the intersection of the
quadric and the line that is the base locus of the pencil of planes). For !, the tangent
space is W 0 ˚H 0.OC .4//, where W 0 is the pencil of line sections of the conic passing
through the point in the plane that is the base locus of the net of planes of !. For �, we
really do not use it as a variety, but only as Chern class of a line bundle (that works as
normal bundle), so we do not need it.

Exercise 1.213. ?? To find the class ı D ŒDL� 2 A1.H/ of the cycle of conics meeting
a line directly, restrict to the open subset U � H of pairs .H; �/ 2 H such that H does
not contain L (since the complement of this open subset of H has codimension 2, any
relation among divisor classes that holds in U will hold in H). Show that we have a map
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˛ W U ! L sending a pair .H; �/ to the point p D H \L, and that in U the divisor DL
is the zero locus of the map of line bundles

T ! ˛�OL.2/

sending a quadric Q 2 � to Q.p/.

Solution to Exercise ??: The definition we give for the line bundle map does not nec-
essarily imply that the target line bundle has to be ˛�OL.2/, but only that is constant
along fiber of ˛, that means, of the kind ˛�OL.d/; to verify that the shift is actually 2,
let us consider a pencil of conics of type ', that means, the intersection of a quadric
Q and a pencil of planes (noone of them containing L); note that ' maps to L by ˛
isomorphically; on ', the bundle T is trivial (because we have a nonvanishing section
given by the polynomial defining Q), hence the line bundle map can be seen as just a
section of ˛�OL.d/ Š O'.d/; this map has two zeroes, at the two planes containing
the two intersection point of L and Q: this proves that d D 2. It is immediate now to
prove that the vanishing locus of this map is indeed DL. This gives also a different way
to find the class ŒDL�; noticing that the first Chern class of ˛�OL.1/ is exacly the class
!, we immediately get ŒDL� D 2! C �.

Exercise 1.214. ?? Let � � H be the locus of singular conics.

(a) Show that � is an irreducible divisor in H.
(b) Express the class ı 2 A1.H/ as a linear combination of ! and �.
(c) Use this to calculate the number of singular conics meeting each of 7 general lines

in P3; and
(d) Verify your answer to the last part by calculating this number directly.

Solution to Exercise ??: In every plane, the set of singular conics is an irreducible
variety (for instance, it can be seen as the image of P2� � P2� in P5); so, every fiber of
the fibration�! P3� is an irreducible divisor, hence� is too. To find its class, we need
to intersect with pencils 
 and !; it is easy to see that intersections are respectively 3 (the
numbber of singular plane conics in a pencil) and 2 (the number of singular hyperplane
sections of a quadric surface): this gives us

Œ�� D 2! C 3�:

To find the number of singular conics meeting 7 lines, we need to find the degree of the
product

.2! C 3�/.2! C �/7 D 3�8 C 44!�7 C 280!2�6 C 448!3�5

That gives us

3 � .�4/C 44 � 6C 280 � .�4/C 448 D 140:
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We cannot use transversality, because this would need studying H 0.NC=P3/ where C is
a nodal space curve, that would require more technical results. Without transversality,
we get that 140 is the number of intersection points counted with multiplicity (it is easy
to prove that the intersection actually happens in a zero dimensional variety); hence, the
number of such conics is less than or equal to 140. Considering the geometry of lines in
P3, a singular conic will be the union of two intersecting lines; there is no line through
5 of the lines of the 7 we are considering, so in our conic one component L1 has to
meet 4 of the lines, and the other L2 has to meet the other three; now, to choose L1 we
need to pick 4 lines out of the seven, and then we have two choices, because of Schubert
calculus; for L2, we need it to intersect the other 3 lines, and L2, giving another problem
of Schubert calculus that still has 2 solutions. We then get 

7

4

!
� 2 � 2 D 140

different conics, that together with the previous part proves that the number is exactly
140.

Exercise 1.215. ?? Let p 2 P3 be a point, and Fp � H the locus of conics containing
the point p. Show that Fp is six-dimensional, and find its class in A2.H/

Solution to Exercise ??: Let us consider the projection Fp ! P3�; over planes not
containing p, the fiber is empty; over planes containing p, the fiber is an hyperplane.
This proves that Fp is irreducible and six-dimensional. To find its class, let us restric
ourselves to the subvariety Z of conics contained in a plane that contains p; on this, we
have a map as in Exercise ??

T ! O

still obtained by Q 7! Q.p/, where now the target is just the trivial bundle (it is the
pullback of the structure sheaf of the point p), and Fp is the vanishing locus of this map,
hence its class on Z is the pullback from H of �; now we can use the push pull formula
for the embedding i W Z ,! H: we have

ŒFp� D i�.ŒZ� � i
��/ D i�.ŒZ�/ � � D !�:

Exercise 1.216. ?? Use the result of the preceding exercise to find the number of conics
passing through a point p and meeting each of 6 general lines in P3, the number of
conics passing through two points p; q and meeting each of 4 general lines in P3, and
the number of conics passing through three points p; q; r and meeting each of 2 general
lines in P3. Verify your answers to the last two parts by direct examination.
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Solution to Exercise ??: We have

deg.!�.2! C �/6/ D deg.!�7 C 12!2�6 C 60!3�5/ D 18

deg.!2�2.2! C �/4/ D deg.!2�6 C 8!3�5/ D 4

deg.!3�3.2! C �/2/ D deg.!3�5/ D 1:

To prove that these are actually transverse, it is possible to prove (as in Proposition ??)
that the tangent space to Fp is the space of normal vector fields that vanish at p;
also, using the fact that the normal bundle OC .2/˚OC .4/ it is possible to prove that
intersection is still transverse (so, everything imposes the right number of conditions
even though we are not anymore in the hypothesys of Lemma ??). For the last one, there
is a unique plane H through the three points p; q; r , and a unique conic on H through
p; q; r and the two points of intersection between H and the two lines. To prove the
middle one, consider the conics through p; q and three of the lines, l1; L2; L3; this is a
one parameter family of lines, one for each of the planes containing p and q; together
they form a surface S in P3, and the result will follow as the intersection with the fourth
line L4, that is, the degree of S , that is 4.

Exercise 1.217. ?? Find the class in A3.H/ of the locus of double lines (note that this
is five-dimensional, not four!)

Solution to Exercise ??: Let us choose a different basis for the Chow ring of H. Instead
of !; �, we will use !; ı; the class of this locus will be

ŒY � D c0!
3
C c1!

2ı C c2!
1ı2 C c3ı

3:

We want to intersect with classes ı5, !ı4, !2ı3 and !3ı2; first, we need to find inter-
section numbers ı8, !ı7, !2ı6 and !3ı5; these are respectively 92,34,8 and 1. The
intersection of Y with ı5, that is zero because no (double) line meets five lines, gives
rise to

0 D c0 C 8c1 C 34c2 C 92c3:

The intersection with !ı4, that is 2 because two lines meet 4 lines (and then we choose
the plane in the only way it is in the net given by !), we get

2 D c1 C 8c2 C 34c3:

To find the intersection with !2ı3, notice that there is a one parameter family of lines
meeting three general lines, the ones of one ruling of the unique quadric containing them.
Then, we want it to be contained in a pencil of planes, that means, to meet a fixed line,
and this happens for two of the lines of this ruling; we then get

2 D c2 C 8c3:
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The intersection with !3ı2 is obviously 1 (we choose the plane, and we have the two
points to join to get a line); we get then

1 D c3:

Building everything back again, we get

ŒZ� D ı3 � 6!1ı2 C 16!2ı � 15!3 D �3 C 4!2� C !3:

We will forget transversality issues in this case.

Exercise 1.218. ?? Suppose that X � Pn is a subscheme of pure dimension l , and H a
component of the Hilbert scheme parametrizing subschemes of Pn of pure dimension
k < n � l in Pn; let ŒY � 2 H be a smooth point corresponding to a subscheme Y � Pn

such that Y \ X D fpg is a single reduced point, and suppose moreover that p is a
smooth point of both X and Y . Finally, let†X � H be the locus of subschemes meeting
X .

Use the technique of Proposition ?? to show that †X � H is smooth at ŒY �, of the
expected codimension n � k � l , with tangent space

TŒY �†X D
˚
� 2 H 0.NY=Pn/ W �.p/ 2

TpX C TpY

TpY

	
:

Solution to Exercise ??: This exercise is left to the reader.

The next few problems deal with an example of a phenomenon encountered in the
preceding chapter: the possibility that the cycles in our parameter space corresponding
to the conditions imposed in fact do not meet transversely, or even properly.

Exercise 1.219. ?? Let H � P3 be a plane, and let EH � H be the closure of the
locus of smooth conics C � P3 tangent to H . Show that this is a divisor, and find its
fundamental class ˇ 2 A1.H/.

Solution to Exercise ??: Using an argument similar to the one in Proposition ??, if C
is a curve tangent at p to H , then

TŒY �EX D
˚
� 2 H 0.NC=P3/ W �.p/ 2

TpH

TpC

	
:

In order to see this, we need to consider the incidence correspondence ‰H of couples
. Qp;C / of a degree 2 subscheme of H supported in a point (that means, a point with a
direction sticking out) and a curve C containing this degree 2 subscheme; note that is
exactly the condition for C to be tangent toH . Considering normal bundles and applying
Lemma ?? (note that H 0.N Qp=H / is different from TpH !), we can prove the claim.

Using this, we can prove transversality with general cycles 
 and ', and just count
the number of intersection points; with 
 , we need the number of conics in a pencil
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tangent to a line, that is 2; with ', we need the number of hyperplane sections of a
quadric in a pencil that are tangent to a plane; or, the number of lines in a pencil in a
plane that are tangent to a conics: the answer is again two. We then find

ŒEH � D 2! C 2�

that is the class we were looking for. Note that the entire variety of double lines is
contained in

Exercise 1.220. ?? Find the number of smooth conics in P3 meeting each of 7 general
lines L1; : : : ; L7 � P3 and tangent to a general plane H � P3. More generally, find the
number of smooth conics in P3 meeting each of 8� k general lines L1; : : : ; L8�k � P3

and tangent to a k general planes H1; : : : ;Hk � P4, for k D 1; 2 and 3.

Solution to Exercise ??: For k � 3, then it is easy to prove that there is no double line
in the intersection (because no line meets 5 general lines), and that there is no singular
conic either, because for the union of two incident lines the only option to lie in EH is
either to have one component entirely contained in H , or to have the node lying on H ;
neither of this is possible if k � 3; so, in the smooth conics in the intersection the cycles
are going to intersect transversely, so we just need to find the degree of the intersection
of cycles, that is

deg..2! C 2�/.2! C �/7/ D 116

deg..2! C 2�/2.2! C �/6/ D 128

deg..2! C 2�/3.2! C �/5/ D 104:

Exercise 1.221. ?? Why don’t the methods developed here work to calculate the number
of smooth conics in P3 meeting each of 8 � k general lines L1; : : : ; L8�k � P3 and
tangent to a k general planes H1; : : : ;Hk � P4, for k � 4? What can you do to find
these numbers? (In fact, we have seen how to deal with this in Chapter ??)

Solution to Exercise ??: For k � 5, a positive family of double lines appears appears
in the intersection, so intersection will not be transverse anymore. For k D 4, we still
have two double lines in the intersection, and they will not be reduced points of the
intersection. One solution, as in the case of plane conics, is to blow up the locus of
double conics, or to consider the moduli space of stable maps M 0;0.P3; 2/; in this case,
they will give two different compactifications of the space of smooth space conics.

Next, some problems involving conics in P4:
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Exercise 1.222. ?? Now let K be the space of conics in P4 (again, defined to be complete
intersections of two hyperplanes and a quadric). Use the description of K as a P5-bundle
over the Grassmannian G.2; 4/ to determine its Chow ring.

Solution to Exercise ??: As in the case of P3, K is the space P.Sym2 S�/; the total
Chern class of Sym2 S� is

c.Sym2 S�/ D 1C4�1C10�2C5�1;1C15�2;1C21�1;1;1C10�2;2C30�2;1;1C20�2;2;1

hence we have

A�.G.2; 4//Œ��=.�6C4�1�5C10�2�4C5�1;1�4C15�2;1�3C21�1;1;1�3C10�2;2�2C30�2;1;1�2C20�2;2;1�/

that describes completely the Chow ring of K.

Exercise 1.223. ?? In terms of your answer to the preceding problem, find the class of
the locus Dƒ of conics meeting a 2-plane ƒ, and of the locus EL of conics meeting a
line L � P4.

Solution to Exercise ??: Let us use a table such as the one in Section ??. Consider the
pencil 
 of conics lying in a plane, and the pencil ' of plane sections of a general quadric
surface in an hyperplane; the table turns out to be exactly the same.

�1 � ŒDƒ�


 0 1 1
' 1 0 2

All checks are easy, as in Exercise ?? (for �' we can use the same argument as in
Section ??; the class is then, again, ŒDƒ� D 2�1 C �.

Exercise 1.224. ?? Find the expected number of conics in P4 meeting each of 11 general
2-planes ƒ1; : : : ; ƒ11 � P4.

Solution to Exercise ??: We need to find the degree .2�1 C �/11; with the aid of the
Schubert2 package of Macaulay2 (available at ?]), we found this degree to be 6620.

Exercise 1.225. ?? Prove that your answer to the preceding problem is in fact the
actual number of conics by showing that for general 2-planes ƒ1; : : : ; ƒ11 � P4 the
corresponding cycles Dƒi

intersect transversely.

Solution to Exercise ??: We leave this exercise to the reader, that can be solved proving
that the in the intersection there are only smooth conics, then proving an equivalent of
Proposition ?? for conics in P4 and invoking Lemma ??.

Finally, here’s a challenge problem:
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Exercise 1.226. ?? Let fSt � P3gt2P1 be a general pencil of quartic surfaces (that is,
take A and B general homogeneous quartic polynomials, and set St D V.t0AC t1B/ �
P3). How many of the surfaces St contain a conic?

Solution to Exercise ??: Consider the line bundle OP3.4/; we would like a vector
bundle E such that for every C 2 H, the fiber is the 9 dimensional vector space
H 0.OP3.4/jC /; in this way, a quartic polynomial would be a section of E , and a section
vanishing at C means a quartic surface containing C . So, we expect a pencil of sections
to have a finite number of zeroes, and this number being evaluated by c8.E/. We need
then to describe E , and we will obtain it as a quotient of H 0.OP3.4//˝ OH Š O35H ,
a trivial bundle, and a vector bundle whose fiber over a curve C is the space of all
polynomials of degree 4 vanishing on C . Let us call L be the polynomial of degree 1 on
P3 vanishing on C , and Q the polynomial of degree 2 on the plane H defined by L that
vanishes on C (note that there is not a single quadric polynomial in P3 vanishing on C ,
it is unique only up to a multiple of L). Among polynomials of degree 4 on P3 vanishing
on C , there are all multiples of L by a polynomial of degree 3; remembering that the
multiples of the polynomial L compose the fiber of the line bundle ��OP3�.�1/ that
has Chern class �!, and that polynomials of degree 3 are just a trivial bundle of rank
20, taking the tensor product we get the vector bundle F1 D OH.�!/

20. The fiber of
the vector bundle O35H =OH.!/

20 over the point C is the vector space of polynomials
of degree 3 on the plane C lies in. We need then to take out the products of Q (coming
from the line bundle OH.��/) with polynomials of degree 2 on this plane; polynomials
of degree 2 on this plane will be polynomials of degree 2 on P3 (hence, a 10-dimensional
trivial vector bundle) quotiented out by polynomials of degree 2 that are multiple of L,
that means (hence, a 4-dimensional trivial vector bundle tensor the line bundle of degree
�!). We hence get the vector bundle

F2 D .O10H =OH.�!/
4/˝OH.��/ Š OH.��/

10=OH.�! � �/
4:

Collecting everything, we have

E D .O35H =F1/=F2

whose total Chern class is given by

c.E/ D
1

c.F1/c.F2/
D

D
.1 � ! � �/4

.1 � !/20.1 � �/10

and after the calculation, we get

c8.E/ D 89892!3�5 C 33396!2�6 C 8976!�7 C 1287�8

that has degree 5016. Finally, notice that every quartic surface containing one conic also
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contain another, because if an hyperplane section contains a conic, then the residual curve
is another conic, so the expected number of such quartics is 2508. Transversality follows
from Lemma ?? (b), because E is generated by global sections; it is also possible to
prove with an incidence correspondence that no conic appearing in this pencil is singular
(hence, those elements of the pencil have nothing to do with the elements containing a
line).

1.10 Chapter 10
Exercise 1.227. ?? Use the result of Exercise ?? (describing the class of the universal
k-plane in Pr �G.k; r/) to give an alternative proof of Proposition ??.

Solution to Exercise ??: From Exercise ??, the class of the universal k-plane F in
Pr �G.k; r/ is

ŒF� D
r�kX
jD0

�r�k�j�j :

Take now B � G.k; r/ of dimension m; the variety swept out by planes in B can be
obtained taking the inverse image B of B by �2 in F, and then the image X of B by �2
in Pr . To find the class, we have

ŒB� D ŒF� � ��2 ŒB� D
r�kX
jD0

�r�k�j .�j � ŒB�/

ŒX� D �1�ŒB�=d

where d is the degree of the (generically finite) map B! X . Now classes with nonzero
pushforward are those of the kind ���i where �� is a zero dimensional class. The only
summand of ŒB� that will end up with a zero dimensional Schubert cycle is �r�k�m.�m �
ŒB�/, whose pushforward will be

ŒX� D .deg.�m � ŒB�/=d/�r�k�m

so we get the degree of X is deg.�m � ŒB�/=d ; but now we know by Proposition ?? that
on G.k; r/ we have

sm.S/ D cm.Q/ D �m;

and we also have so that this degree is also equal to the degree of the m-th Segre class of
the bundle S when restricted to B , as we needed to prove.
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Exercise 1.228. ?? Let X � Pr be a variety, and †m.X/ � G.m � 1; r/ the image
of the secant plane map � W X .m/ ! G.m � 1; r/. Show by example that not every
.m�1/-planeƒ such that deg.ƒ\X/ � m lies in†m.X/. (For example, try X a curve
in P5 with a trisecant line, with m D 3.)

Solution to Exercise ??: As suggested, let X be a curve in P5 with a trisecant line L
meeting X at p; q; r (we will say a couple of words in the end about how to obtain such
a curve); suppose that the trisecant lines is isolated, meaning that the rational map � is
not defined, in a neighborhood of pC qC r , only at pC qC r ; to have this condition, it
is enough for instance to have the three tangent lines TpX , TqX and TrX to generate
an hyperplane H . The map � is not defined at pC q C r , because there is not an unique
2-plane containing the three points; there is in fact a three dimensional space of such
planes, the Schubert cycle †3;3.L/. Now, when we take the closure of the image of � at
p C q C r , the new stuff that will be added will lie inside this †3;3.L/, because every
plane will be limit of planes meetingX with multiplicity 3; but, we are taking the closure
of a 3-dimensional variety, so the “stuff” we are adding can have dimension at most 2,
so it cannot cover the entire †3;3.L/ (in fact, it is easy to prove that we are adding the
cycle †3;3;1.L;H/); this proves than †3.X/ does not contain all planes meeting X at a
scheme of degree 3. To obtain this curve, we can for instance take the projection of a
rational normal curve Y of degree 6 in P6, projecting from a point contained in a single
3-secant plane; it is possible to prove that Y has no 3-secant line, and that a general
point in a general 2-secant plane lies only in one single such plane, hence that on the
projection we have a single isolated 3-secant line.

Exercise 1.229. ?? Prove Proposition ?? in the case of a nondegenerate space curve
C � P3—that is, that the line joining two general points of C does not meet the curve a
third time—without using the general position lemma (??).

Solution to Exercise ??: Consider two general points p and q of C , and consider the
line L joining them; if L meets the curve C also at a third point r , then it is easy to
prove that TpC and TqC intersect (otherwise in a neighborhood of L in G.1; 3/ we
would have secants to C that are not trisecant). Hence, all tangent lines to C intersect
each other, and this means that either they lie in the same plane, or they pass through the
same point (this is easy to check, and holds for any set of lines pairwise intersecting, not
necessarily infinite). If the lines are all in the same plane, then the curve is too, hence is
not nondegenerate; if all tangent lines are through the same point, then projecting away
from that point we would have a map C ! P2 whose differential is zero at every point,
hence is constant (that means that C is a line). Note that the last implication is not true
anymore in positive characteristic XXXX CHECK BACK WITH JOE IF THE ENTIRE
RESULT IS TRUE.
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In Exercises ??-?? we’ll verify that the Veronese varieties listed in Theorem ?? are
indeed defective.

Exercise 1.230. ?? Show that for p; q 2 Pn, the subspaceH 0.I2pI2q .2// � H 0.OPn.2//

of quadrics singular at p and q has codimension 2nC1 (rather than the expected 2nC2).
Deduce that any two tangent planes to the quadratic Veronese variety �2.Pn/ meet, and
thus that �2.Pn/ is 2-defective for any n.

Solution to Exercise ??: Note that the condition of being singular at a point p, for an
hypersurface in Pn, is a condition of codimension nC 1; for a quadric hypersurface,
being singular at two points is the same as being singular along the line joining them, so
it is a condition of codimension 2nC 1 (we can see the condition “missing” from the
fact that once the hypersurface is singular at one point, and it contains another point, it
contains the entire line joining them).

Remember that in the Veronese embedding �2 W Pn ! PN , hyperplane sections cut
on �2.Pn/ all quadric hypersurfaces; hyperplanes containing the tangent plane at �2.p/
are those cutting out hypersurfaces singular at p. For two general points p; q 2 Pr , if
Tp�2.Pn/ and Tq�2.Pn/were independent, then they would impose 2.nC1/ conditions
on hyperplanes to contain both of them; from what we have said so far, they are not
independent (hence, they meet), so using Terracini’s lemma we can conclude that �2.Pn/
is 2-defective for any n.

Exercise 1.231. ?? Show that for any five points p1; : : : ; p5 2 P2, there exists a quartic
curve double at all five; deduce that the tangent planes Tpi

S to the quartic Veronese
surface S D �4.P2/ � P14 are dependent (equivalently, fail to span P14), and hence
that S is 5-defective.

Solution to Exercise ??: As before, we need to prove that the five tangent planes Tpi
S

are dependent; the condition of being singular at a point, for a plane quartic, is a
codimension three conditions; to have the planes dependent, we need the condition to
be tangent at 5 points to have codimension 15; in particular, as we saw, plane quadrics
form a P14, and we should not have any plane quartic singular at 5 points; the point
is, we have one: is the double of the unique conic through the points p1; : : : ; p5; this
proves that the five planes Tpi

S are not independent, and by Terracini’s lemma S is
5-defective.

Exercise 1.232. ?? Show that for any nine points p1; : : : ; p9 2 P3, there exists a quartic
surface double at all nine; deduce that the tangent planes Tpi

X to the quartic Veronese
threefold X D �4.P3/ � P34 fail to span P34), and hence that X is 9-defective.

Solution to Exercise ??: Exactly as in the previous exercise, every tangent space im-
poses 4 conditions, so if the planes Tpi

X were independent, they would impose 36
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conditions; they do not, in fact we can consider the double of the unique quadric through
the 9 points, that gives an hyperplane containing the 9 planes; the claim follows again
from Terracini’s lemma.

Exercise 1.233. ?? Finally, show that for any seven points p1; : : : ; p7 2 P4, there exists
a cubic threefold double at all seven; deduce that the tangent planes Tpi

X to the cubic
Veronese fourfold X D �3.P4/ � P34 are dependent (equivalently, fail to span P34),
and hence that X is 7-defective. (Hint: this problem is harder than the preceding three;
you have to use the fact that through seven general points in P4 there passes a rational
normal quartic curve.)

Solution to Exercise ??: Let us for now suppose that we know that through 7 general
points p1; : : : ; p7 2 P4 there is a twisted cubic C (in fact, there is only one), we will
prove it later. Now, let us consider the secant variety Sec2.C /; this is 3-dimensional, and
has degree 3 (it can be proved projecting C away from a line, or just by Theorem ??).
Sec2.C / is singular along C , because at a point p of C the tangent cone is just the
union of all lines joining p and other points of C ; hence, it is singular at the 7 points
p1; : : : ; p7. Now, for an hypersurface in P4, being singular at a point p is a codimension
5 condition, so at 7 points it should be a 35 codimensional condition; we should not
have a cubic hypersurface singular at 7 points, but in fact we have; for the same reason
as in the previous exercises, then, X is 7-defective. To show that there is a rational
normal curve through 7 general points, we will show the Steiner construction (that in
fact works for rational normal curves through 2d � 1 points in Pd ): let us label the
points p0; p1; p1 and q1; q2; q3; q4; consider now the four pencils of 3-planes fHi;tg
for i D 1; 2; 3; 4 containing the points q1; q2; q3; q4 besides qi ; let us parametrize these
pencils using a parameter t in such a way that Hi;0 contains the point p0, Hi;1 contains
the point p1 and Hi;1 contains the point p1. Consider now the curve obtained as

P1 ! P4

t 7!

4\
iD1

Hi;t :

It is now an easy exercise (for instance, using Schubert calculus) to prove that this actually
gives a rational normal curve, that of course will pass through the seven points.

The following exercises can be solved using the following fact, the completeness
of the adjoint series for plane curves: if C is a nodal curve of degree d in P2, and
QC its normalization, then we obtain the entire canonical series H 0.K QC / pulling back

polynomials of degree d � 3 on P2 vanishing on the nodes of C .

Exercise 1.234. ?? Show that the twisted cubic curve is the unique nondegenerate curve
C � P3 such that a general point p 2 P3 lies on a unique secant line to C . (Note: this
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can be done without it, but it’s easy if you apply the Castelnuovo bound on the genus of
a curve in P3; see Chapter 3 of ?] for a statement and proof.)

Solution to Exercise ??: Let C be a curve of degree d and genus g with this property,
and let us project the curve away from a general point p of P3 onto P3; nodes of the
image C 0 of C will correspond to secant lines to C that contain p, so by hypothesis
the curve C 0 will have only one node. We are now going to use the completeness of
the adjoint series, to prove the following claim: for a plane curve C 0 of degree d with
ı nodes (let us denote by C its normalization), if ı � d � 3 then h0.OC .1// D 3; in
particular, this means that the embedding of the curve C is normal and then it cannot
come from a projection of a curve in P3; applied to our case, we have a plane curve
with one node, so the only option for it to come from a projection is if d � 3, and being
nondegenerate the only option is for it to be the twisted cubic. Let us now prove the
claim; by Riemann-Roch, we have

h0.OC .1// D d � g C 1C h0.K ˝OC .�1//:

But now, sections of K ˝OC .�1/ are just polynomials of degree d � 3 vanishing on
the ı nodes of C 0 and the d points of intersection of C 0 with a line L. Suppose now
that these d C ı points fail to impose independent conditions on polynomials of degree
d � 3 by a number � (that means, the condition of passing through all of them is a
condition of codimension d C ı � �); plugging in everything in the equation, and using
that g D

�
d�1
2

�
� ı, we get the simpler formula

h0.OC .1// D 1C �

that sometimes is called geometric Riemann-Roch formula; let us finally prove that if
ı � d � 3, then � D 2; for this, notice that a polynomial of degree d � 3 vanishing on d
points of a line L, is going to vanish on the entire line (that is a condition of codimension
d � 2, so have “failures” here); so, we ask for polynomials of degree d � 4 vanishing on
ı � d � 3 points: here, the conditions have to be independent, because for instance we
can find polynomials of degree d � 4 vanishing on all points but one (just taking union
of random lines through all of them but one), so here we have no “failure”, and � D 2,
that proves the clais

Exercise 1.235. ?? Show that the rational normal curve and the elliptic normal curve of
degree d C 1 are the only nondegenerate curves C � Pd with the property that every
divisor of degree d on C spans a hyperplane.

Solution to Exercise ??: Let us prove the result by induction on d , that the only possi-
bilities for the curve C are either to be rational of degree d or elliptic of degree d C 1.
Suppose the result true in Pd�1, and let us consider a curve C in Pd of degree e and
genus g; if it every d points on it span an hyperplane, then we can project away from
a point p in C onto Pd�1 and we get a curve C 0 of degree e � 1, genus g, and again
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with the property that any d � 1 points span an hyperplane (otherwise, together with
p in Pd they would give d points on C not spanning an hyperplane in Pd ); hence, C 0

is either rational normal or elliptic normal, and so is C . To prove the other implication,
supposing C contains d points not spanning an hyperplane, projecting away from one
of these points gives a curve C 0 that cannot be rational or elliptic normal, hence neither
can C . It only remains to prove the statement for in P3; we are going to use again the
completeness of the adjoint system. Every d points spanning an hyperplane, in this case
means that there are no trisecant lines; so, projecting C from a point p on the curve, we
would get a curve C 0 in P2 of degree e � 1 and genus g that has no double points, that
means, that is smooth. In the same fashion as in the previous exercise, it is possible to
prove that if we have a smooth plane curve C 0 of degree e � 1 and genus g, p is any
point of C 0, and e � 1 � 4, then

h0.OC 0.1C p// D 3

, that means that the curve does not come from a projection from a point on the curve in
P3; hence, in our case we can conclude e � 4, so either the curve C in P3 is a twisted
cubic, or an elliptic normal curve, or a rational quartic curve; but as we saw in Section ??,
the last one has indeed trisecant lines, hence it has to be excluded; this completes the
proof.

For the following three exercises, C � Pd will be an irreducible, nondegenerate
curve and 2m � 1 < d . The exercises will prove the assertion made in the text that a
general point on the m-secant variety Secm.C / lies on a unique m-secant .m� 1/-plane
to C .

Exercise 1.236. ?? Show, by a dimension count, that a general point of Secm.C / lies
on only proper secants; that is, m � 1 planes spanned by m distinct points of C .

Solution to Exercise ??: Let us consider planes not coming from m distinct points;
these lie in the image of the diagonal in C .m/ (that is, an m � 1-dimensional variety) in
G.m � 1; d/; its universal family (the union of all such planes) cannot have dimension
bigger than 2m� 2, so the general point of Secm.C / will not lie in these planes, because
Secm.C / has dimension 2m � 1 (because curves are not defective). The only other
possibility of points of Secm.C / that are not on proper secants, are points that lie on
m� 1-planes that contain m points of C that are not linearly independent; hence, that lie
in the planes that we obtain when we take the closure of the image of the rational map
C .m/ ! G.m�1; d/; again, this is going to be a subscheme of G.m�1; d/ of dimension
at most m � 1, so its total space inside Secm.C / will again be .2m � 2/-dimensional,
and it will not contain the general point of Secm.C /.

Exercise 1.237. ?? Using Lemma ??, show that the variety of 2m-secant 2m� 2-planes
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to C (equivalently, the locus C .2m/1 of divisors of degree 2m on C contained in a
.2m � 2/-plane) has dimension at most 2m � 2.

Solution to Exercise ??:

Exercise 1.238. ?? Now suppose that a general point of Secm.C / lay on 2 or more
m-secant planes. Show that the dimension of the variety of 2m-secant .2m � 2/-planes
to C would be at least 2m � 1.

Solution to Exercise ??: If a general point p lies in two m-secant .m� 1/-planes, then
considering the collection of 2m points, they span a .2m � 2/-plane (because the two
m � 1-planes intersect), so the general point of Secm.C / lies on a 2m-secant .2m � 2/-
plane, hence the locus of such planes is .2m�1/-dimensional; from the previous exercise,
this is not possible.

Exercise 1.239. ?? Show that if C � Pr is a general rational curve of degree d , and
k is a number such that d � r C k and m � 1 � k, then the locus of m-secant
.m � k � 1/-planes has the expected dimension m � k.r C 1 �mC k/.

Solution to Exercise ??: A general rational curve in Pr of degree d is the same as
the projection of a rational normal curve in Pd from a general Pd�r�1; asking for the
dimension of the locus of m-secant .m � k � 1/-planes in Pr is the same as asking the
dimension of the locus of m-secant m � 1-planes in Pd that meet a general Pd�r�1

in dimension at least k � 1 (note that the condition d � r C k is needed to have this
situation actually happening); this is the same as intersecting in G.m � 1; d/ with a
general Schubert cycle of type

�.r C 1 �mC k; : : : ; r C 1 �mC k/„ ƒ‚ …
k

that has codimension in fact k.r C 1 �mC k/.

Exercise 1.240. ?? By contrast with the preceding exercise, show that there exist
components H of the Hilbert scheme of curves in P3 whose general point corresponds
to a smooth, nondegenerate curve C � P3 with a positive-dimensional family of
quadrisecant lines, or with a quintisecant line.

Solution to Exercise ??: Fixing 2 degrees d and e, complete intersections of surfaces
of degrees d and e give general points of components of Hilbert schemes of curves in
P3 (this is easy to prove, and it comes from the fact that all first order deformations of
such a curve are still complete intersections). Then, if we consider d D 2 and e D 4,
we get curves of type .4; 4/ on quadric surfaces; the lines of the rulings of the quadric
give 1-dimensional families of quadrisecant lines to these curves. Considering d D 3
and e D 5, we get curves on cubic surfaces; it is easy to prove that the 27 lines on the
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cubic surfaces are isolated quintisecant to these curves. Increasing e, we can get general
points of Hilbert schemes of curves, with families of lines with arbitrarily high secancy
order with given lines.

Exercise 1.241. ?? Compute the number of quadrisecant lines to a general rational curve
C � P3 of degree d . (Hint: in the notation of Section ??, the answer is the degree of
the class deg ��.�2;2/ 2 A4.P4/. Express the class �2;2 in terms of the special Scubert
classes �i and use (??) to evaluate it.)

Solution to Exercise ??: We can apply Exercise ?? in the case of r D 3, m D 4 and
k D 2; we then need to find the intersection of the image of C .4/ Š P4 in G.3; d/ with
a �2;2 cycle. From VERONESE SURFACE XXX STUFF, the class �1 pulls back to a
WAIT FOR VERONESE.

Exercise 1.242. ?? Let S � Pn be a smooth surface of degree d and let g be the genus
of a general hyperplane section of S ; let e and f be the degrees of the classes c1.TS /2
and c2.TS / 2 A2.S/. Find the class of the cycle T1.S/ � G.1; n/ of lines tangent to
S in terms of d , e, f and g. (Note: from Exercise ??, we need only the intersection
number deg.ŒT1.S/� � �3/; do this using Segre classes.)

Solution to Exercise ??: The number deg.ŒT1.S/� ��3/ we are looking for is the degree
of the 4-dimensional variety swept out by all tangent lines to S ; from Proposition ??,
this degree is the same as deg.s3.E//; where E is the pullback of S from T1.S/ to the
source space, that is a P1 bundle over S ; more in particular, this P1 bundle is P.T S/,
because points of it are 1-dimensional subspaces of fibers TpS . The Chow ring of this
projective bundle is

A�.P.T S// D A�.S/Œ��=.�2 C c1� C c2/:

The pullback E of S to P.T S/ containsa subbundle of the kind OPn.�1/jS (XXXXXbe-
cause every tangent line contains one point of S ) and the quotient will be

E=OPn.�1/jS Š OP.T S/.�1/˝OPn.�1/jS

so for the Chern classes we have

c.E/ D .1 �H/.1 �H � �/

so that passing to the Segre class we have

s3.E/ D 4H 3
C 6H 2� C 4H�2 C �3:

Note that H is the hyperplane class from the base S of the projective bundle, so that we
have H 3 D 0, and deg.H 2�/ D d . We then have

deg.H�2/ D deg.�H � c1� �H � c2/ D � deg.H � c1�/ D � degS .H � c1/:
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We can then find this degree using adjunction on S and an hyperplane section, that says

deg.H � c1/ D 2g � 2 � d:

To find the degree of �3, we can use twice the relation in the Chow ring, getting

deg.�3/ D deg.�c1�2 � c2�/ D deg.c21� C c1c2 � c2�/ D degS .c
2
1 � c2/ D e � f:

Summing everything up together, and using the result in Exercise ?? on deg.ŒT1.S/� �
�2;1/, we get

ŒT1.S/� D .2d C e � f C 8g � 8/�n�1;n�4 C .2d C 2g � 2/�n�2;n�3;

that confirms what we found in Exercise ??.

Exercise 1.243. ?? Let C � P3 be a smooth curve of degree n and genus g, and S and
T � P3 two smooth surfaces containing C , of degrees d and e. At how many points of
C are S and T tangent?

Solution to Exercise ??:

Exercise 1.244. ?? Show that the conclusion of Corollary ?? fails in characteristic
p > 0:

(a) Let K be a field of characteristic 2, and consider the plane curve

C D V.X2 � YZ/ � P2:

Show that C is smooth, but that the dual curve C � � P2� is a line, so that C �� ¤ C .
(b) Now let K be a field of characteristic p, set q D pe and consider the plane curve

C D V.YZq C Y qZ �XqC1/ � P2:

Show that C is smooth, and that the dual curve C �� D C , but that GC W C ! C �

is not birational!

Solution to Exercise ??: For a plane curve (or more in general for every hypersurface)
the map into the dual is given by the partial derivatives, in particular in the first case the
dual map is

ŒX; Y;Z�! Œ0;�Z;�Y �

restricted to the curve C , that has the line X 0 D 0 (we will denote by X 0; Y 0; Z0

coordinates of the dual space) as image: this is then the dual curve C �; hence, C �� is
just a point, definitely different from C . In the second example, the rational map is

ŒX; Y;Z�! Œ�Xq; Zq; Y q�:

We have

Y 0.Z0/qC.Y 0/qZ0�.X 0/qC1 D ZqY q
2

CZq
2

Y q�Xq.qC1/ D .Y qZCYZq�XqC1/q D 0
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so that the dual curve has equation Y 0.Z0/q C .Y 0/qZ0 � .X 0/qC1, that is the same as
the one of C ; repeating this process once again, we get C �� D C , but the duality map is
the Frobenius morphism (composed with itself e times) so it is not birational, but it has
nonreduced fibers of degree q.

Exercise 1.245. ?? We saw in Section ?? that if X � Pn is a smooth hypersurface of
degree d > 1 then the dual variety X� � Pn� must again be a hypersurface. Show
more generally that if X � Pn is any smooth complete intersection of hypersurfaces of
degrees di > 1 then X� will be a hypersurface.

Solution to Exercise ??:

Exercise 1.246. ?? Let X � Pn be a k-dimensional scroll, that is, a variety given as the
union

X D
[
ƒb

of a one-parameter family of .k � 1/-planes fƒb Š Pk�1 � Png; suppose that k � 2.

(a) Show that if H � Pn is a general hyperplane containing the tangent plane TpX to
X at a smooth point p then the hyperplane section H \X is reducible; and

(b) Deduce that dimX� � n � k C 2 when k � 3.

Solution to Exercise ??: Consider the conormal variety C.X/ in Pn � Pn�, that has
(always) dimension n � 1. Let us prove that fibers of the projection C.X/ ! X� are
positive dimensional, that means, hyperplanes that contain a tangent plane to X contain
indeed a positive dimensional family of tangent planes (more precisely, we need to prove
that fibers are at least .k � 3/-dimensional). Remember that an hyperplane H contains
the tangent plane TpX if and only if the hyperplane section H \ X is singular at p;
now, if H is tangent to X at p, then it contains the entire .k � 1/-plane ƒp of the scroll
where p lies in (because the tangent space contains all lines through p contained in
X ), and hence the hyperplane section is reducible (because X has degree d > 1, hence
the hyperplane section too, so it has other components of total degree d � 1). Now,
inside the k-dimensional variety X , we have ƒp and the residual section �; these are
both codimension 1, so either they are disjoint or their intersection has codimension 2
or 1 in X ; but they intersect at p (because their union is singular at p), so their union
is indeed singular in a locus of dimension at least k � 2; hence, the hyperplane H
contains a .k � 2/-dimensional variety of planes, and so the dual variety has dimension
.n � 1/ � .k � 2/ D n � k C 1.

Exercise 1.247. ?? This is a sort of partial converse to Exercise ?? above. Let X � Pn

be any variety. Use Theorem ?? to deduce that if the dual X� is not a hypersurface, X
must be swept out by positive-dimensional linear spaces.
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Solution to Exercise ??: SupposeX� is not an hypersurface, and hence that the general
fiber of C.X/! X� is positive dimensional (remember that all fibers of this map are
linear spaces, because it is true for C.X/ ! X , and by reflexivity also for X�). But
fibers of this map are subvarieties of X that have an hyperplane whose tangent spaces at
all points are contained in a given hyperplane, and these fibers are linear spaces! SO X

itself is covered by positive dimensional linear spaces.

Exercise 1.248. ?? Let X � Pn be a smooth hypersurface of degree d > 2. Show that
the dual variety X� is necessarily singular.

Solution to Exercise ??: Suppose X is an hypersurface such that X� is smooth, that
means that the Gauss map G W X ! X� is an isomorphism. Let us now consider a
general net B of hyperplane sections of X , and its discriminant curve �; consider also
the curve Q� � X � B of singular points of elements of the net. From considerations as
in the end of Section ?? (see also Exercise ??) we get that Q� is a curve with arithmetic
genus

g. Q�/ D
d.d � 1/2.dn � d � 2nC 1/C 2

2

and that the degree of � is d.d � 1/n�1 (that is just the degree of the dual hypersurface).
Now, it is easy to see that if d > 2, the arithmetic genus of � is way bigger than the
one of Q�, so in the projection Q� ! � there are some double points; but this means
that some elements of the net are singular at more than point, and hence that we have
hyperplanes that are tangent at more than one point, that means, that the Gauss map
cannot be an isomorphism. If d D 2, on the other hand, hyperplane sections are either
smooth quadrics in Pn�1, or cones over a smooth quadric in Pn�2, so that we do not
have bitangent hyperplanes, and the Gauss map is indeed an isomorphism.

Exercise 1.249. ?? Let X D G.1; 4/ � P9 be the Grassmannian of lines in P4,
embedded in P9 by the Plücker embedding. Show that the dual of X is projectively
equivalent to X itself!

Solution to Exercise ??: Remember that at a point ŒL� of G WD G.1; 4/, we have

TŒL�G \G D †2.L/

that means, all lines meeting L; if an hyperplane H cuts on G.1; 4/ hyperplane sections
of type†1.P / where P � L is a 2-plane, will contain it, so thatH is tangent to G at all
points ŒL� where L is a line contained in P ; this means that the projection C.G/! G�

has fibers of dimension at least 2, G� has dimension at most 6 (and of course it is
irreducible). Now, all hyperplanes cutting on G a section †1.P / are tangent to G, and
they constitute a 6 dimensional irreducible subvariety of X�; hence, this is the entire
X�, that is hence isomorphic to G.2; 4/, that is isomorphic (and also linearly equivalent)
to G.1; 4/.
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Exercise 1.250. ?? Let X � Pn be a smooth curve, and for any k D 1; : : : ; n � 1 let

�k W X ! G.k; n/

be the map sending a point p 2 X to its osculating k-plane. Show that the tangent
line to the curve �k.X/ � G.k; n/ at �k.p/ is the (tangent line to the) Schubert cycle
of k-planes containing the osculating .k � 1/-plane to X at p and contained in the
osculating .kC1/-plane toX at p—in other words, to first order the osculating k-planes
move by rotating around the osculating .k � 1/-plane to X at p while staying in the
osculating .k C 1/-plane to X at p.

Solution to Exercise ??:

Exercise 1.251. ?? If E is a smooth elliptic curve (over an algebraically closed field
this means a curve of genus 1 with a chosen point), the addition law on E expresses
the kth symmetric power Ek as a Pk�1 bundle over E. Verify this, and use it to give a
description of A.Ek/.

Solution to Exercise ??: Let us pick p1; : : : ; pk�1 distinct points on E; for every de-
gree k divisor D 2 E.k/, there exists an unique point �.D/ 2 E such that

D D p1 C : : :C pk�1 C �.D/

or equivalently,

�.D/ D D � .p1 C : : :C pk�1/:

This gives a morphism � W E.k/ ! E, whose fibers are all projective spaces Pk�1,
because they are the spaces

P.H 0.OE .p1 C : : :C pk�1 C p///:

Exercise 1.252. ?? Using the preceding exercise, find the degrees of the secant varieties
of an elliptic normal curve E � Pd .

Solution to Exercise ??:
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